Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Measuring Inconsistency through Minimal Proofs

  • Conference paper
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7958))

  • 926 Accesses

Abstract

Measuring the degree of inconsistency of a knowledge base provides important context information for making easier inconsistency handling. In this paper, we propose a new fine-grained measure to quantify the degree of inconsistency of propositional formulae. Our inconsistency measure uses in an original way the minimal proofs to characterize the responsibility of each formula in the global inconsistency. We give an extension of such measure to quantify the inconsistency of the whole base. Furthermore, we show that our measure satisfies the important properties characterizing an intuitive inconsistency measure. Finally, we address the problem of restoring consistency using an inconsistency measure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chen, Q., Zhang, C., Zhang, S.: A verification model for electronic transaction protocols. In: Yu, J.X., Lin, X., Lu, H., Zhang, Y. (eds.) APWeb 2004. LNCS, vol. 3007, pp. 824–833. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Martinez, A.B.B., Arias, J.J.P., Vilas, A.F.: On measuring levels of inconsistency in multi-perspective requirements specifications. In: PRISE 2004, pp. 21–30 (2004)

    Google Scholar 

  3. Qi, G., Liu, W., Bell, D.A.: Measuring conflict and agreement between two prioritized belief bases. In: IJCAI, pp. 552–557 (2005)

    Google Scholar 

  4. Hunter, A.: How to act on inconsistent news: Ignore, resolve, or reject. Data Knowl. Eng. 57(3), 221–239 (2006)

    Article  Google Scholar 

  5. Hunter, A., Konieczny, S.: Shapley inconsistency values. In: KR, pp. 249–259 (2006)

    Google Scholar 

  6. Grant, J., Hunter, A.: Measuring inconsistency in knowledgebases. J. Intell. Inf. Syst. 27(2), 159–184 (2006)

    Article  Google Scholar 

  7. Martinez, M.V., Pugliese, A., Simari, G.I., Subrahmanian, V.S., Prade, H.: How dirty is your relational database? An axiomatic approach. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724, pp. 103–114. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Zhou, L., Huang, H., Qi, G., Ma, Y., Huang, Z., Qu, Y.: Measuring inconsistency in dl-lite ontologies. In: Web Intelligence, pp. 349–356 (2009)

    Google Scholar 

  9. McAreavey, K., Liu, W., Miller, P., Mu, K.: Measuring inconsistency in a network intrusion detection rule set based on snort. Int. J. Semantic Computing 5(3) (2011)

    Google Scholar 

  10. Knight, K.: Measuring inconsistency. J. Philosophical Logic 31(1), 77–98 (2002)

    Article  MATH  Google Scholar 

  11. Grant, J.: Classifications for inconsistent theories. Notre Dame Journal of Formal Logic 19(3), 435–444 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hunter, A.: Measuring inconsistency in knowledge via quasi-classical models. In: AAAI/IAAI, pp. 68–73 (2002)

    Google Scholar 

  13. Oller, C.A.: Measuring coherence using lp-models. J. Applied Logic 2(4), 451–455 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grant, J., Hunter, A.: Analysing inconsistent first-order knowledgebases. Artif. Intell. 172(8-9), 1064–1093 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ma, Y., Qi, G., Xiao, G., Hitzler, P., Lin, Z.: Computational complexity and anytime algorithm for inconsistency measurement. Int. J. Software and Informatics 4(1), 3–21 (2010)

    Google Scholar 

  16. Xiao, G., Lin, Z., Ma, Y., Qi, G.: Computing inconsistency measurements under multi-valued semantics by partial max-sat solvers. In: KR (2010)

    Google Scholar 

  17. Ma, Y., Qi, G., Hitzler, P.: Computing inconsistency measure based on paraconsistent semantics. J. Log. Comput. 21(6), 1257–1281 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Doder, D., Raskovic, M., Markovic, Z., Ognjanovic, Z.: Measures of inconsistency and defaults. Int. J. Approx. Reasoning 51(7), 832–845 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hunter, A., Konieczny, S.: Measuring inconsistency through minimal inconsistent sets. In: KR, pp. 358–366 (2008)

    Google Scholar 

  20. Mu, K., Liu, W., Jin, Z.: A general framework for measuring inconsistency through minimal inconsistent sets. Knowl. Inf. Syst. 27(1), 85–114 (2011)

    Article  Google Scholar 

  21. Mu, K., Liu, W., Jin, Z.: Measuring the blame of each formula for inconsistent prioritized knowledge bases. J. Log. Comput. 22(3), 481–516 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Xiao, G., Ma, Y.: Inconsistency measurement based on variables in minimal unsatisfiable subsets. In: ECAI, pp. 864–869 (2012)

    Google Scholar 

  23. Hunter, A.: Logical comparison of inconsistent perspectives using scoring functions. Knowl. Inf. Syst. 6(5), 528–543 (2004)

    Article  Google Scholar 

  24. Hunter, A., Konieczny, S.: On the measure of conflicts: Shapley inconsistency values. Artif. Intell. 174(14), 1007–1026 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mu, K., Liu, W., Jin, Z., Bell, D.A.: A syntax-based approach to measuring the degree of inconsistency for belief bases. Int. J. Approx. Reasoning 52(7), 978–999 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  27. Robinson, A.J.: A machine-oriented logic based on the resolution principle. Journal of the ACM 12(1), 23–41 (1965)

    Article  MATH  Google Scholar 

  28. Grant, J., Hunter, A.: Measuring the good and the bad in inconsistent information. In: IJCAI, pp. 2632–2637 (2011)

    Google Scholar 

  29. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of constraints. J. Autom. Reasoning 40(1), 1–33 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jabbour, S., Raddaoui, B. (2013). Measuring Inconsistency through Minimal Proofs. In: van der Gaag, L.C. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2013. Lecture Notes in Computer Science(), vol 7958. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39091-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39091-3_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39090-6

  • Online ISBN: 978-3-642-39091-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics