Abstract
Measuring the degree of inconsistency of a knowledge base provides important context information for making easier inconsistency handling. In this paper, we propose a new fine-grained measure to quantify the degree of inconsistency of propositional formulae. Our inconsistency measure uses in an original way the minimal proofs to characterize the responsibility of each formula in the global inconsistency. We give an extension of such measure to quantify the inconsistency of the whole base. Furthermore, we show that our measure satisfies the important properties characterizing an intuitive inconsistency measure. Finally, we address the problem of restoring consistency using an inconsistency measure.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chen, Q., Zhang, C., Zhang, S.: A verification model for electronic transaction protocols. In: Yu, J.X., Lin, X., Lu, H., Zhang, Y. (eds.) APWeb 2004. LNCS, vol. 3007, pp. 824–833. Springer, Heidelberg (2004)
Martinez, A.B.B., Arias, J.J.P., Vilas, A.F.: On measuring levels of inconsistency in multi-perspective requirements specifications. In: PRISE 2004, pp. 21–30 (2004)
Qi, G., Liu, W., Bell, D.A.: Measuring conflict and agreement between two prioritized belief bases. In: IJCAI, pp. 552–557 (2005)
Hunter, A.: How to act on inconsistent news: Ignore, resolve, or reject. Data Knowl. Eng. 57(3), 221–239 (2006)
Hunter, A., Konieczny, S.: Shapley inconsistency values. In: KR, pp. 249–259 (2006)
Grant, J., Hunter, A.: Measuring inconsistency in knowledgebases. J. Intell. Inf. Syst. 27(2), 159–184 (2006)
Martinez, M.V., Pugliese, A., Simari, G.I., Subrahmanian, V.S., Prade, H.: How dirty is your relational database? An axiomatic approach. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724, pp. 103–114. Springer, Heidelberg (2007)
Zhou, L., Huang, H., Qi, G., Ma, Y., Huang, Z., Qu, Y.: Measuring inconsistency in dl-lite ontologies. In: Web Intelligence, pp. 349–356 (2009)
McAreavey, K., Liu, W., Miller, P., Mu, K.: Measuring inconsistency in a network intrusion detection rule set based on snort. Int. J. Semantic Computing 5(3) (2011)
Knight, K.: Measuring inconsistency. J. Philosophical Logic 31(1), 77–98 (2002)
Grant, J.: Classifications for inconsistent theories. Notre Dame Journal of Formal Logic 19(3), 435–444 (1978)
Hunter, A.: Measuring inconsistency in knowledge via quasi-classical models. In: AAAI/IAAI, pp. 68–73 (2002)
Oller, C.A.: Measuring coherence using lp-models. J. Applied Logic 2(4), 451–455 (2004)
Grant, J., Hunter, A.: Analysing inconsistent first-order knowledgebases. Artif. Intell. 172(8-9), 1064–1093 (2008)
Ma, Y., Qi, G., Xiao, G., Hitzler, P., Lin, Z.: Computational complexity and anytime algorithm for inconsistency measurement. Int. J. Software and Informatics 4(1), 3–21 (2010)
Xiao, G., Lin, Z., Ma, Y., Qi, G.: Computing inconsistency measurements under multi-valued semantics by partial max-sat solvers. In: KR (2010)
Ma, Y., Qi, G., Hitzler, P.: Computing inconsistency measure based on paraconsistent semantics. J. Log. Comput. 21(6), 1257–1281 (2011)
Doder, D., Raskovic, M., Markovic, Z., Ognjanovic, Z.: Measures of inconsistency and defaults. Int. J. Approx. Reasoning 51(7), 832–845 (2010)
Hunter, A., Konieczny, S.: Measuring inconsistency through minimal inconsistent sets. In: KR, pp. 358–366 (2008)
Mu, K., Liu, W., Jin, Z.: A general framework for measuring inconsistency through minimal inconsistent sets. Knowl. Inf. Syst. 27(1), 85–114 (2011)
Mu, K., Liu, W., Jin, Z.: Measuring the blame of each formula for inconsistent prioritized knowledge bases. J. Log. Comput. 22(3), 481–516 (2012)
Xiao, G., Ma, Y.: Inconsistency measurement based on variables in minimal unsatisfiable subsets. In: ECAI, pp. 864–869 (2012)
Hunter, A.: Logical comparison of inconsistent perspectives using scoring functions. Knowl. Inf. Syst. 6(5), 528–543 (2004)
Hunter, A., Konieczny, S.: On the measure of conflicts: Shapley inconsistency values. Artif. Intell. 174(14), 1007–1026 (2010)
Mu, K., Liu, W., Jin, Z., Bell, D.A.: A syntax-based approach to measuring the degree of inconsistency for belief bases. Int. J. Approx. Reasoning 52(7), 978–999 (2011)
Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)
Robinson, A.J.: A machine-oriented logic based on the resolution principle. Journal of the ACM 12(1), 23–41 (1965)
Grant, J., Hunter, A.: Measuring the good and the bad in inconsistent information. In: IJCAI, pp. 2632–2637 (2011)
Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of constraints. J. Autom. Reasoning 40(1), 1–33 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jabbour, S., Raddaoui, B. (2013). Measuring Inconsistency through Minimal Proofs. In: van der Gaag, L.C. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2013. Lecture Notes in Computer Science(), vol 7958. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39091-3_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-39091-3_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39090-6
Online ISBN: 978-3-642-39091-3
eBook Packages: Computer ScienceComputer Science (R0)