Abstract
We study the problem of reconstructing a hidden graph given access to a distance oracle. We design randomized algorithms for the following problems: reconstruction of a degree bounded graph with query complexity \(\tilde{O}(n^{3/2})\); reconstruction of a degree bounded outerplanar graph with query complexity \(\tilde{O}(n)\); and near-optimal approximate reconstruction of a general graph.
Full version available at http://arxiv.org/abs/1304.6588
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amenta, N., Bern, M., Eppstein, D.: The crust and the beta-skeleton: Combinatorial curve reconstruction. In: Graphical Models and Image Processing, pp. 125–135 (1998)
Anandkumar, A., Hassidim, A., Kelner, J.A.: Topology discovery of sparse random graphs with few participants. In: SIGMETRICS, pp. 293–304. ACM (2011)
Angluin, D., Chen, J.: Learning a hidden graph using O(log n) queries per edge. In: Learning Theory, pp. 210–223. Springer, Heidelberg (2004)
Beerliova, Z., Eberhard, F., Erlebach, T., Hall, A., Hoffmann, M., Mihaľák, M., Ram, L.S.: Network discovery and verification. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 127–138. Springer, Heidelberg (2005)
Bouvel, M., Grebinski, V., Kucherov, G.: Combinatorial search on graphs motivated by bioinformatics applications: A brief survey. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 16–27. Springer, Heidelberg (2005)
Castro, R., Coates, M., Liang, G., Nowak, R., Yu, B.: Network tomography: recent developments. Statistical Science 19, 499–517 (2004)
Chartrand, G., Harary, F.: Planar permutation graphs. Annales de l’institut Henri Poincaré (B) Probabilités et Statistiques 3(4), 433–438 (1967)
Chen, D., Guibas, L.J., Hershberger, J., Sun, J.: Road network reconstruction for organizing paths. In: SODA, pp. 1309–1320 (2010)
Choi, S.-S., Kim, J.H.: Optimal query complexity bounds for finding graphs. In: STOC, pp. 749–758. ACM (2008)
Dall’Asta, L., Alvarez-Hamelin, I., Barrat, A., Vázquez, A., Vespignani, A.: Exploring networks with traceroute-like probes: Theory and simulations. Theoretical Computer Science 355(1), 6–24 (2006)
Dey, T.K., Wenger, R.: Reconstructing curves with sharp corners. Comput. Geom. Theory and Appl. 19, 89–99 (2000)
Erlebach, T., Hall, A., Hoffmann, M., Mihaľák, M.: Network discovery and verification with distance queries. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998, pp. 69–80. Springer, Heidelberg (2006)
Grebinski, V., Kucherov, G.: Optimal reconstruction of graphs under the additive model. Algorithmica 28(1), 104–124 (2000)
Hein, J.J.: An optimal algorithm to reconstruct trees from additive distance data. Bulletin of Mathematical Biology 51(5), 597–603 (1989)
Honiden, S., Houle, M.E., Sommer, C.: Balancing graph voronoi diagrams. In: ISVD, pp. 183–191. IEEE (2009)
King, V., Zhang, L., Zhou, Y.: On the complexity of distance-based evolutionary tree reconstruction. In: SODA, pp. 444–453. SIAM (2003)
Mazzawi, H.: Optimally reconstructing weighted graphs using queries. In: SODA, pp. 608–615. SIAM (2010)
Reyzin, L., Srivastava, N.: Learning and verifying graphs using queries with a focus on edge counting. In: Hutter, M., Servedio, R.A., Takimoto, E. (eds.) ALT 2007. LNCS (LNAI), vol. 4754, pp. 285–297. Springer, Heidelberg (2007), http://dx.doi.org/10.1007/978-3-540-75225-7_24
Reyzin, L., Srivastava, N.: On the longest path algorithm for reconstructing trees from distance matrices. Information Processing Letters 101(3), 98–100 (2007)
Tarissan, F., Latapy, M., Prieur, C.: Efficient measurement of complex networks using link queries. In: INFOCOM Workshops, pp. 254–259. IEEE (2009)
Thorup, M., Zwick, U.: Compact routing schemes. In: SPAA, pp. 1–10. ACM (2001)
Waterman, M.S., Smith, T.F., Singh, M., Beyer, W.A.: Additive evolutionary trees. Journal of Theoretical Biology 64(2), 199–213 (1977)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mathieu, C., Zhou, H. (2013). Graph Reconstruction via Distance Oracles. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds) Automata, Languages, and Programming. ICALP 2013. Lecture Notes in Computer Science, vol 7965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39206-1_62
Download citation
DOI: https://doi.org/10.1007/978-3-642-39206-1_62
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39205-4
Online ISBN: 978-3-642-39206-1
eBook Packages: Computer ScienceComputer Science (R0)