Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Graph Reconstruction via Distance Oracles

  • Conference paper
Automata, Languages, and Programming (ICALP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7965))

Included in the following conference series:

Abstract

We study the problem of reconstructing a hidden graph given access to a distance oracle. We design randomized algorithms for the following problems: reconstruction of a degree bounded graph with query complexity \(\tilde{O}(n^{3/2})\); reconstruction of a degree bounded outerplanar graph with query complexity \(\tilde{O}(n)\); and near-optimal approximate reconstruction of a general graph.

Full version available at http://arxiv.org/abs/1304.6588

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amenta, N., Bern, M., Eppstein, D.: The crust and the beta-skeleton: Combinatorial curve reconstruction. In: Graphical Models and Image Processing, pp. 125–135 (1998)

    Google Scholar 

  2. Anandkumar, A., Hassidim, A., Kelner, J.A.: Topology discovery of sparse random graphs with few participants. In: SIGMETRICS, pp. 293–304. ACM (2011)

    Google Scholar 

  3. Angluin, D., Chen, J.: Learning a hidden graph using O(log n) queries per edge. In: Learning Theory, pp. 210–223. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Beerliova, Z., Eberhard, F., Erlebach, T., Hall, A., Hoffmann, M., Mihaľák, M., Ram, L.S.: Network discovery and verification. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 127–138. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Bouvel, M., Grebinski, V., Kucherov, G.: Combinatorial search on graphs motivated by bioinformatics applications: A brief survey. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 16–27. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Castro, R., Coates, M., Liang, G., Nowak, R., Yu, B.: Network tomography: recent developments. Statistical Science 19, 499–517 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chartrand, G., Harary, F.: Planar permutation graphs. Annales de l’institut Henri Poincaré (B) Probabilités et Statistiques 3(4), 433–438 (1967)

    MathSciNet  MATH  Google Scholar 

  8. Chen, D., Guibas, L.J., Hershberger, J., Sun, J.: Road network reconstruction for organizing paths. In: SODA, pp. 1309–1320 (2010)

    Google Scholar 

  9. Choi, S.-S., Kim, J.H.: Optimal query complexity bounds for finding graphs. In: STOC, pp. 749–758. ACM (2008)

    Google Scholar 

  10. Dall’Asta, L., Alvarez-Hamelin, I., Barrat, A., Vázquez, A., Vespignani, A.: Exploring networks with traceroute-like probes: Theory and simulations. Theoretical Computer Science 355(1), 6–24 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dey, T.K., Wenger, R.: Reconstructing curves with sharp corners. Comput. Geom. Theory and Appl. 19, 89–99 (2000)

    Article  MathSciNet  Google Scholar 

  12. Erlebach, T., Hall, A., Hoffmann, M., Mihaľák, M.: Network discovery and verification with distance queries. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998, pp. 69–80. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Grebinski, V., Kucherov, G.: Optimal reconstruction of graphs under the additive model. Algorithmica 28(1), 104–124 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hein, J.J.: An optimal algorithm to reconstruct trees from additive distance data. Bulletin of Mathematical Biology 51(5), 597–603 (1989)

    MATH  Google Scholar 

  15. Honiden, S., Houle, M.E., Sommer, C.: Balancing graph voronoi diagrams. In: ISVD, pp. 183–191. IEEE (2009)

    Google Scholar 

  16. King, V., Zhang, L., Zhou, Y.: On the complexity of distance-based evolutionary tree reconstruction. In: SODA, pp. 444–453. SIAM (2003)

    Google Scholar 

  17. Mazzawi, H.: Optimally reconstructing weighted graphs using queries. In: SODA, pp. 608–615. SIAM (2010)

    Google Scholar 

  18. Reyzin, L., Srivastava, N.: Learning and verifying graphs using queries with a focus on edge counting. In: Hutter, M., Servedio, R.A., Takimoto, E. (eds.) ALT 2007. LNCS (LNAI), vol. 4754, pp. 285–297. Springer, Heidelberg (2007), http://dx.doi.org/10.1007/978-3-540-75225-7_24

    Chapter  Google Scholar 

  19. Reyzin, L., Srivastava, N.: On the longest path algorithm for reconstructing trees from distance matrices. Information Processing Letters 101(3), 98–100 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tarissan, F., Latapy, M., Prieur, C.: Efficient measurement of complex networks using link queries. In: INFOCOM Workshops, pp. 254–259. IEEE (2009)

    Google Scholar 

  21. Thorup, M., Zwick, U.: Compact routing schemes. In: SPAA, pp. 1–10. ACM (2001)

    Google Scholar 

  22. Waterman, M.S., Smith, T.F., Singh, M., Beyer, W.A.: Additive evolutionary trees. Journal of Theoretical Biology 64(2), 199–213 (1977)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mathieu, C., Zhou, H. (2013). Graph Reconstruction via Distance Oracles. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds) Automata, Languages, and Programming. ICALP 2013. Lecture Notes in Computer Science, vol 7965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39206-1_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39206-1_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39205-4

  • Online ISBN: 978-3-642-39206-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics