Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The IO and OI Hierarchies Revisited

  • Conference paper
Automata, Languages, and Programming (ICALP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7966))

Included in the following conference series:

Abstract

We study languages of λ-terms generated by IO and OI unsafe grammars. These languages can be used to model meaning representations in the formal semantics of natural languages following the tradition of Montague [19]. Using techniques pertaining to the denotational semantics of the simply typed λ-calculus, we show that the emptiness and membership problems for both types of grammars are decidable. In the course of the proof of the decidability results for OI, we identify a decidable variant of the λ-definability problem, and prove a stronger form of Statman’s finite completeness Theorem [28].

Long version: http://hal.inria.fr/hal-00818069

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aehlig, K., de Miranda, J.G., Ong, C.-H.L.: Safety is not a restriction at level 2 for string languages. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 490–504. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Aho, A.V.: Indexed grammars - an extension of context-free grammars. J. ACM 15(4), 647–671 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amadio, R.M., Curien, P.-L.: Domains and Lambda-Calculi. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press (1998)

    Google Scholar 

  4. Blum, W., Ong, C.-H.L.: The safe lambda calculus. Logical Methods in Computer Science 5(1:3), 1–38 (2009)

    MathSciNet  Google Scholar 

  5. Bourreau, P., Salvati, S.: A datalog recognizer for almost affine λ-cfgs. In: Kanazawa, M., Kornai, A., Kracht, M., Seki, H. (eds.) MOL 12. LNCS, vol. 6878, pp. 21–38. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Broadbent, C.H.: The limits of decidability for first order logic on cpda graphs. In: STACS, pp. 589–600 (2012)

    Google Scholar 

  7. Damm, W.: The IO- and OI-hierarchies. Theor. Comput. Sci. 20, 95–207 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. de Groote, P.: Towards abstract categorial grammars. In: ACL (ed.) Proceedings 39th Annual Meeting of ACL, pp. 148–155 (2001)

    Google Scholar 

  9. de Groote, P., Lebedeva, E.: On the dynamics of proper names. Technical report, INRIA (2010)

    Google Scholar 

  10. de Groote, P., Lebedeva, E.: Presupposition accommodation as exception handling. In: SIGDIAL, pp. 71–74. ACL (2010)

    Google Scholar 

  11. Engelfriet, J.: Iterated stack automata and complexity classes. Inf. Comput. 95(1), 21–75 (1991)

    Article  MathSciNet  Google Scholar 

  12. Fischer, M.J.: Grammars with macro-like productions. PhD thesis, Harvard University (1968)

    Google Scholar 

  13. Haddad, A.: IO vs OI in higher-order recursion schemes. In: FICS. EPTCS, vol. 77, pp. 23–30 (2012)

    Google Scholar 

  14. Huet, G.: Résolution d’équations dans des langages d’ordre 1,2,...,ω. Thèse de doctorat en sciences mathématiques, Université Paris VII (1976)

    Google Scholar 

  15. Kanazawa, M.: Parsing and generation as datalog queries. In: Proceedings of the 45th Annual Meeting of ACL, pp. 176–183. ACL (2007)

    Google Scholar 

  16. Knapik, T., Niwiński, D., Urzyczyn, P.: Higher-order pushdown trees are easy. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 205–222. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. Lebedeva, E.: Expressing Discourse Dynamics Through Continuations. PhD thesis, Université de Lorraine (2012)

    Google Scholar 

  18. Loader, R.: The undecidability of λ-definability. In: Logic, Meaning and Computation: Essays in Memory of Alonzo Church, pp. 331–342. Kluwer (2001)

    Google Scholar 

  19. Montague, R.: Formal Philosophy: Selected Papers of Richard Montague. Yale University Press, New Haven (1974)

    Google Scholar 

  20. Moschovakis, Y.: Sense and denotation as algorithm and value. In: Logic Colloquium 1990: ASL Summer Meeting in Helsinki, vol. 2, p. 210. Springer (1993)

    Google Scholar 

  21. Muskens, R.: Lambda Grammars and the Syntax-Semantics Interface. In: Proceedings of the Thirteenth Amsterdam Colloquium, pp. 150–155 (2001)

    Google Scholar 

  22. Ong, C.-H.L.: On model-checking trees generated by higher-order recursion schemes. In: LICS, pp. 81–90 (2006)

    Google Scholar 

  23. Parys, P.: On the significance of the collapse operation. In: LICS, pp. 521–530 (2012)

    Google Scholar 

  24. Salvati, S.: Recognizability in the Simply Typed Lambda-Calculus. In: Ono, H., Kanazawa, M., de Queiroz, R. (eds.) WoLLIC 2009. LNCS, vol. 5514, pp. 48–60. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  25. Salvati, S.: On the membership problem for non-linear acgs. Journal of Logic Language and Information 19(2), 163–183 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Salvati, S., Manzonetto, G., Gehrke, M., Barendregt, H.: Loader and Urzyczyn are logically related. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 364–376. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  27. Salvati, S., Walukiewicz, I.: Recursive schemes, Krivine machines, and collapsible pushdown automata. In: Finkel, A., Leroux, J., Potapov, I. (eds.) RP 2012. LNCS, vol. 7550, pp. 6–20. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  28. Statman, R.: Completeness, invariance and λ-definability. Journal of Symbolic Logic 47(1), 17–26 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  29. Terui, K.: Semantic evaluation, intersection types and complexity of simply typed lambda calculus. In: RTA, pp. 323–338 (2012)

    Google Scholar 

  30. van Rooij, I.: The tractable cognition thesis. Cognitive Science 32, 939–984 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kobele, G.M., Salvati, S. (2013). The IO and OI Hierarchies Revisited. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds) Automata, Languages, and Programming. ICALP 2013. Lecture Notes in Computer Science, vol 7966. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39212-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39212-2_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39211-5

  • Online ISBN: 978-3-642-39212-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics