Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Adaptive Comprehensive Learning Bacterial Foraging Optimization for Function Optimization

  • Conference paper
Emerging Intelligent Computing Technology and Applications (ICIC 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 375))

Included in the following conference series:

Abstract

This paper proposes a variant of the bacterial foraging optimization (BFO) algorithm with time-varying chemotaxis step length and comprehensive learning strategy, namely Adaptive Comprehensive Learning Bacterial Foraging Optimization (ALCBFO). An adaptive non-linearly decreasing modulation model is used to balance the exploration and exploitation. The comprehensive learning mechanism is adopted to maintain the diversity of the bacterial population and thus alleviates the premature convergence. Compared with the classical GA, PSO, the original BFO and two improved BFOs (BFO-LDC and BFO-NDC), the proposed ACLBFO shows significantly better performance in solving multimodal problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Systems Magazine, 52–67 (2002)

    Google Scholar 

  2. Panigrahi, B.K., Pandi, V.R.: Bacterial foraging optimization: Nelder-Mead hybrid algorithm for economic load dispatch. IET Generation Transmission & Distribution 2(4), 556–565 (2008)

    Article  Google Scholar 

  3. Kou, P.G., Zhou, J.Z., He, Y.Y., Xiang, X.Q., Li, C.S.: Optimal PID governor tuning of hydraulic turbine generators with bacterial foraging particle swarm optimization algorithm. Proceedings of the Chinese Society of Electrical Engineering 29(26), 101–106 (2009)

    Google Scholar 

  4. Niu, B., Fan, Y., Xiao, H., Xue, B.: Bacterial foraging based approaches to portfolio optimization with liquidity risk. Neurocomputing 98(3), 90–100 (2012)

    Article  Google Scholar 

  5. Okaeme, N.A., Zanchetta, P.: Hybrid bacterial foraging optimization strategy for automated experimental control design in electrical drives. IEEE Transactions on Industrial Informatics 9(2), 668–678 (2013)

    Article  Google Scholar 

  6. Niu, B., Wang, H.: Bacterial colony optimization. Discrete Dynamics in Nature and Society, 1–28 (2012)

    Google Scholar 

  7. Niu, B., Fan, Y., Zhao, P., Xue, B., Li, L., Chai, Y.J.: A novel bacterial foraging optimizer with linear decreasing chemotaxis step. In: 2nd International Workshop on Intelligent Systems and Applications (ISA), pp. 1–4 (2010)

    Google Scholar 

  8. Niu, B., Fan, Y., Wang, H.: Novel bacterial foraging optimization with time-varying chemotaxis step. International Journal of Artificial Intelligence, 257–273 (2011)

    Google Scholar 

  9. Niu, B., Wang, H., Tan, L.J., Li, L.: Improved BFO with adaptive chemotaxis step for global optimization. In: International Conference on Computational Intelligence and Security (CIS), pp. 76–80 (2011)

    Google Scholar 

  10. Liang, J.J., Qin, A.K., Suganthan, P.N.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation 10(3), 281–295 (2006)

    Article  Google Scholar 

  11. Ashlock, D.: Evolutionary computation for modeling and optimization. Springer, New York (2006)

    MATH  Google Scholar 

  12. Shi, Y., Eberhart, R.C.: Empirical study of particle swarm optimization. In: Proceedings of the IEEE Congress Evolutionary Computation, pp. 1945–1950 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tan, L., Wang, H., Liang, X., Xing, K. (2013). An Adaptive Comprehensive Learning Bacterial Foraging Optimization for Function Optimization. In: Huang, DS., Gupta, P., Wang, L., Gromiha, M. (eds) Emerging Intelligent Computing Technology and Applications. ICIC 2013. Communications in Computer and Information Science, vol 375. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39678-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39678-6_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39677-9

  • Online ISBN: 978-3-642-39678-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics