Abstract
This paper introduces the concept of Vertex Unique Labelled Subgraph Mining (VULSM), a specialised form of subgraph mining. A VULS is a subgraph defined by a set of edge labels that has a unique vertex labelling associated with it. A minimal VULS is then a VULS which is not a supergraph of any other VULS. The application considered in this paper, for evaluation purposes, is error prediction with respect to sheet metal forming. The minimum BFS Right-most Extension Unique Subgraph Mining (Min-BFS-REUSM) algorithm is introduced for identifying minimal VULS using a Breadth First Search(BFS) strategy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Asai, T., Abe, K., Kawasoe, S., Sakamoto, H., Arikawa, S.: Efficient substructure discovery from large semi-structured data. In: Proc. 2002 SIAM Int.Conf. Data Mining (2002)
Cafuta, G., Mole, N., Tok, B.: An enhanced displacement adjustment method: Springback and thinning compensation. Materials and Design 40, 476–487 (2012)
Firat, M., Kaftanoglu, B., Eser, O.: Sheet metal forming analyses with an emphasis on the springback deformation. Journal of Materials Processing Technology 196(1-3), 135–148 (2008)
Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: Current status and future directions. Data Mining and Knowledge Discovery 15(1), 55–86 (2007)
Huan, J., Wang, W., Prins, J., Yang, J.: SPIN: mining maximal frequent subgraphs from graph databases. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 581–586 (2004)
Jeswiet, J., Micari, F., Hirt, G., Bramley, A., Allwood, J.D.: Asymmetric single point incremental forming of sheet metal. CIRP Annals Manufacturing Technology 54(2), 88–114 (2005)
Liu, W., Liang, Z., Huang, T., Chen, Y., Lian, J.: Process optimal ccontrol of sheet metal forming springback based on evolutionary strategy. In: 7th World Congress on Intelligent Control and Automation, WCICA 2008, pp. 7940–7945 (June 2008)
Nasrollahi, V., Arezoo, B.: Prediction of springback in sheet metal components with holes on the bending area, using experiments, finite element and neural networks. Materials and Design 36, 331–336 (2012)
Salhi, S., Coenen, F., Dixon, C., Khan, M.: Identification of correlations between 3d surfaces using data mining techniques: Predicting springback in sheet metal forming. In: AI 2012, pp. 391–404. Springer, Cambridge (2012)
Yan, X., Han, J.: Close Graph: mining closed frequent graph patterns. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 286–295 (2003)
Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In: Proceedings of the 2002 International Conference on Data Mining, p. 721 (2002)
Zhu, F., Yan, X., Han, J., Yu, P.S.: gPrune: A constraint pushing framework for graph pattern mining. In: Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4426, pp. 388–400. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag GmbH Berlin Heidelberg
About this paper
Cite this paper
Yu, W., Coenen, F., Zito, M., El Salhi, S. (2013). Minimal Vertex Unique Labelled Subgraph Mining. In: Bellatreche, L., Mohania, M.K. (eds) Data Warehousing and Knowledge Discovery. DaWaK 2013. Lecture Notes in Computer Science, vol 8057. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40131-2_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-40131-2_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40130-5
Online ISBN: 978-3-642-40131-2
eBook Packages: Computer ScienceComputer Science (R0)