Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Expressivity of Time-Varying Graphs

  • Conference paper
Fundamentals of Computation Theory (FCT 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8070))

Included in the following conference series:

  • 682 Accesses

Abstract

Time-varying graphs model in a natural way infrastructure-less highly dynamic systems, such as wireless ad-hoc mobile networks, robotic swarms, vehicular networks, etc. In these systems, a path from a node to another might still exist over time, rendering computing possible, even though at no time the path exists in its entirety. Some of these systems allow waiting (i.e., provide the nodes with store-carry-forward-like mechanisms such as local buffering) while others do not.

In this paper, we focus on the structure of the time-varying graphs modelling these highly dynamical environments. We examine the complexity of these graphs, with respect to waiting, in terms of their expressivity; that is in terms of the language generated by the feasible journeys (i.e., the “paths over time”).

We prove that the set of languages \({\cal L}_{nowait}\) when no waiting is allowed contains all computable languages. On the other end, using algebraic properties of quasi-orders, we prove that \({\cal L}_{wait}\) is just the family of regular languages, even if the presence of edges is controlled by some arbitrary function of the time. In other words, we prove that, when waiting is allowed, the power of the accepting automaton drops drastically from being as powerful as a Turing machine, to becoming that of a Finite-State machine. This large gap provides a measure of the impact of waiting.

We also study bounded waiting; that is when waiting is allowed at a node for at most d time units. We prove that \({\cal L}_{wait[d]} = {\cal L}_{nowait}\); that is, the complexity of the accepting automaton decreases only if waiting is unbounded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Comp. Sci. 126(2), 183–235 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Avin, C., Koucký, M., Lotker, Z.: How to explore a fast-changing world (Cover time of a simple random walk on evolving graphs). In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 121–132. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Baumann, H., Crescenzi, P., Fraigniaud, P.: Parsimonious flooding in dynamic graphs. In: Proc. 28th Symp. Princ. Distr. Comput., pp. 260–269 (2009)

    Google Scholar 

  4. Bui-Xuan, B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost journeys in dynamic networks. Intl. J. Found. Comp. Science 14(2), 267–285 (2003)

    Article  MathSciNet  Google Scholar 

  5. Casteigts, A., Chaumette, S., Ferreira, A.: Characterizing topological assumptions of distributed algorithms in dynamic networks. In: Kutten, S., Žerovnik, J. (eds.) SIROCCO 2009. LNCS, vol. 5869, pp. 126–140. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Measuring temporal lags in delay-tolerant networks. IEEE Transactions on Computers (2013)

    Google Scholar 

  7. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. International Journal of Parallel, Emergent and Distributed Systems 27(5), 387–408 (2012)

    Article  Google Scholar 

  8. Clementi, A., Monti, A., Pasquale, F., Silvestri, R.: Information spreading in stationary markovian evolving graphs. IEEE Transactions on Parallel and Distributed Systems 22(9), 1425–1432 (2011)

    Article  Google Scholar 

  9. Ehrenfeucht, A., Haussler, D., Rozenberg, G.: On regularity of context-free languages. Theoretical Computer Science 27(3), 311–332 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ferreira, A.: Building a reference combinatorial model for MANETs. IEEE Network 18(5), 24–29 (2004)

    Article  Google Scholar 

  11. Flocchini, P., Mans, B., Santoro, N.: On the exploration of time-varying networks. Theoretical Computer Science 469, 53–68 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Harju, T., Ilie, L.: On quasi orders of words and the confluence property. Theoretical Computer Science 200(1-2), 205–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Higman, G.: Ordering by divisibility in abstract algebras. Proceedings of the London Mathematical Society s3-2, 326–336 (1952)

    Google Scholar 

  14. Ilcinkas, D., Wade, A.M.: On the power of waiting when exploring public transportation systems. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 451–464. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Kossinets, G., Kleinberg, J., Watts, D.: The structure of information pathways in a social communication network. In: Proc. 14th Intl. Conf. Knowledge Discovery Data Mining, pp. 435–443 (2008)

    Google Scholar 

  16. Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks. In: Proc. 42nd Symp. Theory Comp, pp. 513–522 (2010)

    Google Scholar 

  17. Liu, C., Wu, J.: Scalable routing in cyclic mobile networks. IEEE Trans. Parallel Distrib. Syst. 20(9), 1325–1338 (2009)

    Article  Google Scholar 

  18. C. St. Nash-Williams, J. A.: On well-quasi-ordering finite trees. Mathematical Proceedings of the Cambridge Philosophical Society 59(04), 833–835 (1963)

    Google Scholar 

  19. Zhang, Z.: Routing in intermittently connected mobile ad hoc networks and delay tolerant networks: Overview and challenges. IEEE Communications Surveys & Tutorials 8(1), 24–37 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Casteigts, A., Flocchini, P., Godard, E., Santoro, N., Yamashita, M. (2013). Expressivity of Time-Varying Graphs. In: Gąsieniec, L., Wolter, F. (eds) Fundamentals of Computation Theory. FCT 2013. Lecture Notes in Computer Science, vol 8070. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40164-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40164-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40163-3

  • Online ISBN: 978-3-642-40164-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics