Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Minimal Tile and Bond-Edge Types for Self-Assembling DNA Graphs

  • Chapter
  • First Online:
Discrete and Topological Models in Molecular Biology

Abstract

We employ a model for self-assembling graph-theoretical complexes using tiles representing branched-junction DNA molecules with free cohesive ends. We determine the minimum number of tile and bond-edge types necessary to create a given graph as a self-assembled complex under three different scenarios: (1) where the incidental creation of complexes of smaller size than the target graph is acceptable; (2) where the incidental creation of complexes the same size as the target graph is acceptable, but not smaller complexes; and (3) where no complexes the same size as or smaller than the target graph are acceptable. In each of these cases, we find bounds for the minimum number of tile and bond-edge types that must be designed, and give specific minimum values for common graph classes (including cycles and trees, as well as complete, bipartite, and regular graphs). For these classes of graphs, we provide either explicit descriptions of optimal tile sets or efficient algorithms for generating the desired set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Adleman, Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)

    Article  Google Scholar 

  2. A. Aho, J. Hopcroft, J. Ullman, The Design and Analysis of Computer Algorithms (Addison-Wesley, Reading, MA 1974)

    MATH  Google Scholar 

  3. J. Chen, N. Seeman, Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633 (1991)

    Article  Google Scholar 

  4. Cornell University, Self-assembled DNA Buckyballs For Drug Delivery. ScienceDaily (2005, August 31). Retrieved 23 Oct 2013, from http://www.sciencedaily.com/releases/2005/08/050829074441.htm

  5. H. Fleischner, Eulerian Graphs and Related Topics. Part 1. Vol. 1. Volume 45 of Annals of Discrete Mathematics (North-Holland, Amsterdam, 1990)

    Google Scholar 

  6. H. Fleischner, Eulerian Graphs and Related Topics. Part 1. Vol. 2. Volume 50 of Annals of Discrete Mathematics (North-Holland, Amsterdam, 1991)

    Google Scholar 

  7. H. Gu, J. Chao, S. Xiao, N. Seeman, Dynamic patterning programmed by DNA tiles captured on a DNA origami substrate. Nat. Nanotechnol. 4(4), 245–248 (2009)

    Article  Google Scholar 

  8. N. Jonoska, G. McColm, Complexity classes for self-assembling flexible tiles. Biosystems 410(4–5), 332–346 (2009)

    MATH  MathSciNet  Google Scholar 

  9. N. Jonoska, N. Seeman, Computing by molecular self-assembly. Interface Focus 2, 504–511 (2012)

    Article  Google Scholar 

  10. N. Jonoska, S. Karl, M. Saito, Creating 3-dimensional graph structures with DNA, in Proceedings of the First Annual Meeting, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 44 (American Mathematical Society, Providence, 1998), pp. 123–136

    Google Scholar 

  11. N. Jonoska, S. Karl, M. Saito, Three dimensional DNA structures in computing. Biosystems 52, 143–153 (1999)

    Article  Google Scholar 

  12. N. Jonoska, G. McColm, A. Staninska, Expectation and variance of self-assembled graph structures, in Proceedings of the 11th International Conference on DNA Computing, DNA’05 (Springer, Berlin/Heidelberg, 2006), pp. 144–157

    Google Scholar 

  13. N. Jonoska, G. McColm, A. Staninska, Spectrum of a pot for DNA complexes, in DNA Computing, vol 4287, Lecture Notes in Computer Science ed. by C. Mao, T. Yokomori (Springer, Berlin/Heidelberg, 2006), pp. 83–94. ISBN:978-3-540-49024-1, DOI:10.1007/11925903_7, URL:http://dx.doi.org/10.1007/11925903_7

  14. N. Jonoska, G. McColm, A. Staninska, On stoichiometry for the assembly of flexible tile DNA complexes. Nat. Comput. 10(3), 1121–1141 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. T. LaBean, H. Li, Constructing novel materials with DNA. Nanotoday 2(2), 26–35 (2007)

    Article  Google Scholar 

  16. Y. Roh, R. Ruiz, S. Peng, J. Lee, D. Luo, Engineering DNA-based functional materials. Chem. Soc. Rev. 40, 5730–5744 (2011)

    Article  Google Scholar 

  17. P. Rothemund, Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006)

    Article  Google Scholar 

  18. P. Sa-Ardyen, N. Jonoska, N. Seeman, Self-assembling DNA graphs. Nat. Comput. 2(4), 427–438 (2003)

    MATH  MathSciNet  Google Scholar 

  19. N. Seeman, Nanomaterials based on DNA. Annu. Rev. Biochem. 79, 65–87 (2007)

    Article  Google Scholar 

  20. Self-assembly design strategies, http://sites.google.com/site/nanoselfassembly/ (2013)

  21. W. Shih, J. Quispe, G. Joyce, A 1.7 kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427, 618–621 (2004)

    Google Scholar 

  22. A. Staninska, The graph of a pot with DNA molecules, in Proceedings of the 3rd Annual Conference on Foundations of Nanoscience (FNANO’06), Snowbird, Apr 2006, pp. 222–226

    Google Scholar 

  23. Y. Wang, J. Mueller, B. Kemper, N. Seeman, Assembly and characterization of five-arm and six-arm DNA branched junctions. Biochemistry 30(23), 5667–5674 (1991)

    Article  Google Scholar 

  24. H. Yan, S. Park, G. Finkelstein, J. Reif, T. LaBean, DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301, 1882–1884 (2003)

    Article  Google Scholar 

  25. Y. Zhang, N. Seeman, Construction of a DNA-truncated octahedron. J. Am. Chem. Soc. 116, 1661–1669 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dan Archdeacon, Natasha Jonoska, Bruce Sagan, Ned Seeman, and Anna Staninska for a number of informative conversations. We also thank Saint Michael’s College students Brian Hopper and Paul Jarvis, who considered some closely related problems.

Support was provided by the National Science Foundation through award 1001408, by the National Security Agency, and by the Vermont Genetics Network through Grant Number P20 RR16462 from the INBRE Program of the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH). The contents of this chapter are solely the responsibility of the authors and do not necessarily represent the official views of the NSF, NCRR, or NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Ellis-Monaghan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ellis-Monaghan, J., Pangborn, G., Beaudin, L., Miller, D., Bruno, N., Hashimoto, A. (2014). Minimal Tile and Bond-Edge Types for Self-Assembling DNA Graphs. In: Jonoska, N., Saito, M. (eds) Discrete and Topological Models in Molecular Biology. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40193-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40193-0_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40192-3

  • Online ISBN: 978-3-642-40193-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics