Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Dense Correspondence of Skull Models by Automatic Detection of Anatomical Landmarks

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8047))

Included in the following conference series:

Abstract

Determining dense correspondence between 3D skull models is a very important but difficult task due to the complexity of the skulls. Non-rigid registration is at present the predominant approach for dense correspondence. It registers a reference model to a target model and then resamples the target according to the reference. Methods that use manually marked corresponding landmarks are accurate, but manual marking is tedious and potentially error prone. On the other hand, methods that automatically detect correspondence based on local geometric features are sensitive to noise and outliers, which can adversely affect their accuracy. This paper presents an automatic dense correspondence method for skull models that combines the strengths of both approaches. First, anatomical landmarks are automatically and accurately detected to serve as hard constraints for non-rigid registration. They ensure that the correspondence is anatomically consistent and accurate. Second, control points are sampled on the skull surfaces to serve as soft constraints for non-rigid registration. They provide additional local shape constraints for a closer match between the reference and the target. Test results show that, by combining both approaches, our algorithm can achieve more accurate automatic dense correspondence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allen, B., Curless, B., Popović, Z.: The space of human body shapes: reconstruction and parameterization from range scans. In: Proc. SIGGRAPH (2003)

    Google Scholar 

  2. Berar, M., Desvignes, M., Bailly, G., Payan, Y.: 3D meshes registration: Application to statistical skull model. In: Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004. LNCS, vol. 3212, pp. 100–107. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Cheng, Y., Leow, W.K., Lim, T.C.: Automatic identification of frankfurt plane and mid-sagittal plane of skull. In: Proc. WACV (2012)

    Google Scholar 

  4. Chui, H., Rangarajan, A.: A new algorithm for non-rigid point matching. In: Proc. CVPR (2000)

    Google Scholar 

  5. Deng, Q., Zhou, M., Shui, W., Wu, Z., Ji, Y., Bai, R.: A novel skull registration based on global and local deformations for craniofacial reconstruction. Forensic Science International 208, 95–102 (2011)

    Article  Google Scholar 

  6. Fleute, M., Lavallée, S.: Building a complete surface model from sparse data using statistical shape models: Application to computer assisted knee surgery. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 879–887. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  7. Hu, Y., Duan, F., Zhou, M., Sun, Y., Yin, B.: Craniofacial reconstruction based on a hierarchical dense deformable model. EURASIP Journal on Advances in Signal Processing 217, 1–14 (2012)

    Google Scholar 

  8. Hutton, T.J., Buxton, B.F., Hammond, P.: Automated registration of 3D faces using dense surface models. In: Proc. BMVC (2003)

    Google Scholar 

  9. Lapeer, R.J.A., Prager, R.W.: 3D shape recovery of a newborn skull using thin-plate splines. Computerized Medical Imaging & Graphics 24(3), 193–204 (2000)

    Article  Google Scholar 

  10. Lorenz, C., Krahnstöver, N.: Generation of point-based 3D shape models for anatomical objects. Computer Vision and Image Understanding 77, 175–191 (2000)

    Article  Google Scholar 

  11. Lüthi, M., Albrecht, T., Vetter, T.: Building shape models from lousy data. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part II. LNCS, vol. 5762, pp. 1–8. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Pan, G., Han, S., Wu, Z., Zhang, Y.: Removal of 3D facial expressions: A learning-based approach. In: Proc. CVPR (2010)

    Google Scholar 

  13. Phillips, J.M., Liu, R., Tomasi, C.: Outlier robust icp for minimizing fractional RMSD. In: Proc. 3D Digital Imaging and Modeling (2007)

    Google Scholar 

  14. Rosas, A., Bastir, M.: Thin-plate spline analysis of allometry and sexual dimorphism in the human craniofacial complex. American J. Physical Anthropology 117, 236–245 (2002)

    Article  Google Scholar 

  15. Seo, H., Magnenat-Thalmann, N.: An automatic modeling of human bodies from sizing parameters. In: Proc. ACM SIGGRAPH (2003)

    Google Scholar 

  16. Siwek, D.F., Hoyt, R.J.: Anatomy of the human skull, http://skullanatomy.info

  17. Taylor, K.T.: Forensic Art and Illustration. CRC (2001)

    Google Scholar 

  18. Turner, W.D., Brown, R.E., Kelliher, T.P., Tu, P.H., Taister, M.A., Miller, K.W.: A novel method of automated skull registration for forensic facial approximation. Forensic Science International 154, 149–158 (2005)

    Article  Google Scholar 

  19. Wang, Y., Peterson, B.S., Staib, L.H.: Shape-based 3D surface correspondence using geodesics and local geometry. In: Proc. CVPR (2000)

    Google Scholar 

  20. Zeng, Y., Wang, C., Wang, Y.: Automated registration of 3D faces using dense surface models. In: Proc. CVPR (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, K., Cheng, Y., Leow, W.K. (2013). Dense Correspondence of Skull Models by Automatic Detection of Anatomical Landmarks. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds) Computer Analysis of Images and Patterns. CAIP 2013. Lecture Notes in Computer Science, vol 8047. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40261-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40261-6_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40260-9

  • Online ISBN: 978-3-642-40261-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics