Abstract
This paper presents a real time approach to track the human body pose in the 3D space. For the buying behavior analysis, the camera is placed on the top of the shelves, above the customers. In this top view, the markerless tracking is harder. Hence, we use the depth cue provided by the kinect that gives discriminative features of the pose. We introduce a new 3D model that are fitted to these data in a particle filter framework. First the head and shoulders position is tracked in the 2D space of the acquisition images. Then the arms poses are tracked in the 3D space. Finally, we demonstrate that an efficient implementation provides a real-time system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ababsa, F.: Robust Extended Kalman Filtering For Camera Pose Tracking Using 2D to 3D Lines Correspondences. In: IEEE/ASME Conference on Advanced Intelligent Mechatronics, pp. 1834–1838 (2009)
Ababsa, F., Mallem, M.: A Robust Circular Fiducial Detection Technique and Real-Time 3D Camera Tracking. International Journal of Multimedia 3, 34–41 (2008)
Canton-Ferrer, C., Salvador, J., Casas, J.R., Pardàs, M.: Multi-person Tracking Strategies Based on Voxel Analysis. In: Stiefelhagen, R., Bowers, R., Fiscus, J.G. (eds.) CLEAR 2007 and RT 2007. LNCS, vol. 4625, pp. 91–103. Springer, Heidelberg (2008)
Deutscher, J., Reid, I.: Articulated Body Motion Capture by Stochastic Search. International Journal of Computer Vision 2, 185–205 (2005)
Didier, J.Y., Ababsa, F., Mallem, M.: Hybrid Camera Pose Estimation Combining Square Fiducials Localisation Technique and Orthogonal Iteration Algorithm. International Journal of Image and Graphics 8, 169–188 (2008)
Gonzalez, M., Collet, C.: Robust Body Parts Tracking using Particle Filter and Dynamic Template. In: IEEE International Conference on Image Processing, pp. 529–532 (2011)
Hauberg, S., Sommer, S., Pedersen, K.S.: Gaussian-like Spatial Priors for Articulated Tracking. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 425–437. Springer, Heidelberg (2010)
Horaud, R., Niskanen, M., Dewaele, G., Boyer, E.: Human Motion Tracking by Registering an Articulated Surface to 3D Points and Normals. IEEE Transaction on Pattern Analysis and Machine Intelligence 31, 158–163 (2009)
Isard, M., Blake, A.: CONDENSATION - Conditional Density Propagation for Visual Tracking. International Journal of Computer Vision 29, 5–28 (1998)
Kjellström, H., Kragic, D., Black, M.J.: Tracking People Interacting with Objects. In: IEEE Conference on Computer Vision and Pattern Recognition (2010)
Kobayashi, Y., Sugimura, D., Sato, Y., Hirasawa, K., Suzuki, N., Kage, H., Sugimoto, A.: 3D Head Tracking using the Particle Filter with Cascaded Classifiers. In: British Machine Vision Conference, pp. 37–46 (2006)
Lin, J.Y., Wu, Y., Huang, T.S.: 3D Model-based Hand Tracking using Stochastic Direct Search Method. In: IEEE International Conference on Automatic Face and Gesture Recognition, pp. 693–698 (2004)
Funes-Mora, K.A., Odobez, J.: Gaze Estimation from Multimodal Kinect Data. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 25–30 (2012)
Micilotta, A., Bowden, R.: View-Based Location and Tracking of Body Parts for Visual Interaction. In: British Machine Vision Conference, pp. 849–858 (2004)
Stoll, C., Hasler, N., Gall, J., Seidel, H.P., Theobalt, C.: Fast Articulated Motion Tracking using a Sums of Gaussians Body Model. In: International Conference on Computer Vision, pp. 951–958 (2011)
Xia, L., Chen, C.C., Aggarwal, J.K.: Human Detection Using Depth Information by Kinect. In: International Workshop on Human Activity Understanding from 3D Data (2011)
Yang, C., Duraiswami, R., Davis, L.: Fast Multiple Object Tracking via a Hierarchical Particle Filter. In: International Conference on Computer Vision, pp. 212–219 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Migniot, C., Ababsa, F. (2013). 3D Human Tracking from Depth Cue in a Buying Behavior Analysis Context. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds) Computer Analysis of Images and Patterns. CAIP 2013. Lecture Notes in Computer Science, vol 8047. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40261-6_58
Download citation
DOI: https://doi.org/10.1007/978-3-642-40261-6_58
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40260-9
Online ISBN: 978-3-642-40261-6
eBook Packages: Computer ScienceComputer Science (R0)