Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

3D Human Tracking from Depth Cue in a Buying Behavior Analysis Context

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8047))

Included in the following conference series:

Abstract

This paper presents a real time approach to track the human body pose in the 3D space. For the buying behavior analysis, the camera is placed on the top of the shelves, above the customers. In this top view, the markerless tracking is harder. Hence, we use the depth cue provided by the kinect that gives discriminative features of the pose. We introduce a new 3D model that are fitted to these data in a particle filter framework. First the head and shoulders position is tracked in the 2D space of the acquisition images. Then the arms poses are tracked in the 3D space. Finally, we demonstrate that an efficient implementation provides a real-time system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ababsa, F.: Robust Extended Kalman Filtering For Camera Pose Tracking Using 2D to 3D Lines Correspondences. In: IEEE/ASME Conference on Advanced Intelligent Mechatronics, pp. 1834–1838 (2009)

    Google Scholar 

  2. Ababsa, F., Mallem, M.: A Robust Circular Fiducial Detection Technique and Real-Time 3D Camera Tracking. International Journal of Multimedia 3, 34–41 (2008)

    Google Scholar 

  3. Canton-Ferrer, C., Salvador, J., Casas, J.R., Pardàs, M.: Multi-person Tracking Strategies Based on Voxel Analysis. In: Stiefelhagen, R., Bowers, R., Fiscus, J.G. (eds.) CLEAR 2007 and RT 2007. LNCS, vol. 4625, pp. 91–103. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Deutscher, J., Reid, I.: Articulated Body Motion Capture by Stochastic Search. International Journal of Computer Vision 2, 185–205 (2005)

    Article  Google Scholar 

  5. Didier, J.Y., Ababsa, F., Mallem, M.: Hybrid Camera Pose Estimation Combining Square Fiducials Localisation Technique and Orthogonal Iteration Algorithm. International Journal of Image and Graphics 8, 169–188 (2008)

    Article  Google Scholar 

  6. Gonzalez, M., Collet, C.: Robust Body Parts Tracking using Particle Filter and Dynamic Template. In: IEEE International Conference on Image Processing, pp. 529–532 (2011)

    Google Scholar 

  7. Hauberg, S., Sommer, S., Pedersen, K.S.: Gaussian-like Spatial Priors for Articulated Tracking. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 425–437. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Horaud, R., Niskanen, M., Dewaele, G., Boyer, E.: Human Motion Tracking by Registering an Articulated Surface to 3D Points and Normals. IEEE Transaction on Pattern Analysis and Machine Intelligence 31, 158–163 (2009)

    Article  Google Scholar 

  9. Isard, M., Blake, A.: CONDENSATION - Conditional Density Propagation for Visual Tracking. International Journal of Computer Vision 29, 5–28 (1998)

    Article  Google Scholar 

  10. Kjellström, H., Kragic, D., Black, M.J.: Tracking People Interacting with Objects. In: IEEE Conference on Computer Vision and Pattern Recognition (2010)

    Google Scholar 

  11. Kobayashi, Y., Sugimura, D., Sato, Y., Hirasawa, K., Suzuki, N., Kage, H., Sugimoto, A.: 3D Head Tracking using the Particle Filter with Cascaded Classifiers. In: British Machine Vision Conference, pp. 37–46 (2006)

    Google Scholar 

  12. Lin, J.Y., Wu, Y., Huang, T.S.: 3D Model-based Hand Tracking using Stochastic Direct Search Method. In: IEEE International Conference on Automatic Face and Gesture Recognition, pp. 693–698 (2004)

    Google Scholar 

  13. Funes-Mora, K.A., Odobez, J.: Gaze Estimation from Multimodal Kinect Data. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 25–30 (2012)

    Google Scholar 

  14. Micilotta, A., Bowden, R.: View-Based Location and Tracking of Body Parts for Visual Interaction. In: British Machine Vision Conference, pp. 849–858 (2004)

    Google Scholar 

  15. Stoll, C., Hasler, N., Gall, J., Seidel, H.P., Theobalt, C.: Fast Articulated Motion Tracking using a Sums of Gaussians Body Model. In: International Conference on Computer Vision, pp. 951–958 (2011)

    Google Scholar 

  16. Xia, L., Chen, C.C., Aggarwal, J.K.: Human Detection Using Depth Information by Kinect. In: International Workshop on Human Activity Understanding from 3D Data (2011)

    Google Scholar 

  17. Yang, C., Duraiswami, R., Davis, L.: Fast Multiple Object Tracking via a Hierarchical Particle Filter. In: International Conference on Computer Vision, pp. 212–219 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Migniot, C., Ababsa, F. (2013). 3D Human Tracking from Depth Cue in a Buying Behavior Analysis Context. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds) Computer Analysis of Images and Patterns. CAIP 2013. Lecture Notes in Computer Science, vol 8047. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40261-6_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40261-6_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40260-9

  • Online ISBN: 978-3-642-40261-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics