Abstract
The efficient definition of the tumor area is crucial in brain tumor resection planning. But current methods embedded in computer aided diagnosis systems can be time consuming, while the initialization of the segmentation mask may be possible. In this work, we develop a method for rapid automated segmentation of brain tumors.
The main contribution of our work is an efficient method to initialize the segmentation by casting it as nonparametric density mode estimation, and developing a Branch and Bound-based method to efficiently find the mode (maximum) of the density function. Our technique is exact, has guaranteed convergence to the global optimum, and scales logarithmically in the volume dimensions by virtue of recursively subdividing the search space through Branch-and-Bound and Dual-Tress data structures.
This estimated mode provides our system with an initial tumor hypothesis which is then refined by graph-cuts to provide a sharper outline of the tumor area.
We demonstrate a 12-fold acceleration with respect to a standard mean-shift implementation, allowing us to accelerate tumor detection to a level that would facilitate a high-degree brain tumor resection planning.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Duffau, H., Capelle, L.: Preferential brain locations of low-grade gliomas. Cancer 100, 2622–2626 (2004)
Parisot, S., Duffau, H., Chemouny, S., Paragios, N.: Graph-based detection, segmentation & characterization of brain tumors. In: CVPR, pp. 988–995 (2012)
Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)
van Walsum, T., Schaap, M., Metz, C.T., van der Giessen, A.G., Niessen, W.J.: Averaging centerlines mean shift on paths. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 900–907. Springer, Heidelberg (2008)
Prima, D.G.L.S., Collins, D.L., Arnold, D.L., Morrissey, S.P., Barillot, C.: Combining robust expectation maximization and mean shift algorithms for multiple sclerosis brain segmentation. In: MICCAI Workshop on Medical Image Analysis on Multiple Sclerosis (2008)
Mayer, A., Greenspan, H.: An adaptive mean-shift framework for mri brain segmentation. IEEE Transactions on Medical Imaging (2009)
Sheikh, Y.A., Khan, E.: Kanade, T.: Mode-seeking by medoidshifts. In: ICCV, Number 141 (2007)
Vedaldi, A., Soatto, S.: Quick shift and kernel methods for mode seeking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 705–718. Springer, Heidelberg (2008)
Yang, C., Duraiswami, R., Gumerov, N.A., Davis, L.S.: Improved fast gauss transform and efficient kernel density estimation. In: ICCV, pp. 464–471 (2003)
Wang, P., Lee, D., Gray, A.G., Rehg, J.M.: Fast mean shift with accurate and stable convergence. Journal of Machine Learning Research - Proceedings Track 2, 604–611 (2007)
Kokkinos, I.: Rapid deformable object detection using dual-tree branch-and-bound. In: Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., Weinberger, K. (eds.) NIPS, pp. 2681–2689 (2011)
Birkbeck, N., Cobzas, D., Jägersand, M., Murtha, A., Kesztyues, T.: An interactive graph cut method for brain tumor segmentation. In: WACV, pp. 1–7 (2009)
Scott, D.: Multivariate density estimation: theory, practice, and visualization. Wiley series in probability and mathematical statistics: Applied probability and statistics. Wiley (1992)
Gray, A.G.: Nonparametric density estimation: toward computational tractability. In: SIAM International Conference on Data Mining (2003)
Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26, 1124–1137 (2004)
Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts. PAMI 26, 65–81 (2004)
Toussaint, N., Souplet, J.C., Fillard, P.: Medinria: Medical image navigation and research tool by inria. In: Proc. of MICCAI 2007 Workshop on Interaction in Medical Image Analysis and Visualization (2007)
Bauer, S., Nolte, L.-P., Reyes, M.: Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 354–361. Springer, Heidelberg (2011)
Engheta, N., Murphy, W.D., Rokhlin, V., Vassiliou, M.: The fast multipole method for electromagnetic scattering computation. IEEE Transactions on Antennas and Propagation 40, 634–641 (1985)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Boussaid, H., Kokkinos, I., Paragios, N. (2013). Rapid Mode Estimation for 3D Brain MRI Tumor Segmentation. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, XC. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2013. Lecture Notes in Computer Science, vol 8081. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40395-8_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-40395-8_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40394-1
Online ISBN: 978-3-642-40395-8
eBook Packages: Computer ScienceComputer Science (R0)