Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Faster Computation of All the Best Swap Edges of a Shortest Paths Tree

  • Conference paper
Algorithms – ESA 2013 (ESA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8125))

Included in the following conference series:

  • 2445 Accesses

Abstract

We consider a 2-edge connected, non-negatively weighted graph G, with n nodes and m edges, and a single-source shortest paths tree (SPT) of G rooted at an arbitrary node. If an edge of the SPT is temporarily removed, a widely recognized approach to reconnect the nodes disconnected from the root consists of joining the two resulting subtrees by means of a single non-tree edge, called a swap edge. This allows to reduce consistently the set-up and computational costs which are incurred if we instead rebuild a new optimal SPT from scratch. In the past, several optimality criteria have been considered to select a best possible swap edge, and here we restrict our attention to arguably the two most significant measures: the minimization of either the maximum or the average distance between the root and the disconnected nodes. For the former criteria, we present an O(m logα(m,n)) time algorithm to find a best swap edge for every edge of the SPT, thus improving onto the previous O(m logn) time algorithm (B. Gfeller, ESA’08). Concerning the latter criteria, we provide an O(m + n logn) time algorithm for the special but important case where G is unweighted, which compares favorably with the \(O\big(m+n \, \alpha(n,n)\log^2n\big)\) time bound that one would get by using the fastest algorithm known for the weighted case – once this is suitably adapted to the unweighted case.

This work was partially supported by the Research Grant PRIN 2010 “ARS TechnoMedia”, funded by the Italian Ministry of Education, University, and Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ackermann, W.: Zum hilbertschen aufbau der reellen zahlen. Mathematical Annals 99, 118–133 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bilò, D., Gualà, L., Proietti, G.: Finding best swap edges minimizing the routing cost of a spanning tree. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 138–149. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Brodal, G.S., Jacob, R.: Dynamic planar convex hull. In: Proc. of the 43rd Symp. on Foundations of Computer Science (FOCS 2002), pp. 617–626. IEEE Comp. Soc. (2002)

    Google Scholar 

  4. Di Salvo, A., Proietti, G.: Swapping a failing edge of a shortest paths tree by minimizing the average stretch factor. Theor. Comp. Science 383(1), 23–33 (2007)

    Article  MATH  Google Scholar 

  5. Gualà, L., Proietti, G.: Exact and approximate truthful mechanisms for the shortest-paths tree problem. Algorithmica 49(3), 171–191 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM Journal on Computing 13(2), 338–355 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the ACM 34(3), 596–615 (1987)

    Article  MathSciNet  Google Scholar 

  8. Gfeller, B.: Faster swap edge computation in minimum diameter spanning trees. Algorithmica 62(1-2), 169–191 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Italiano, G.F., Ramaswami, R.: Maintaining spanning trees of small diameter. Algorithmica 22(3), 275–304 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ito, H., Iwama, K., Okabe, Y., Yoshihiro, T.: Polynomial-time computable backup tables for shortest-path routing. In: Proc. of the 10th Int. Coll. on Structural Information and Communication Complexity (SIROCCO 2003). Proceedings in Informatics, Carleton Scientific, vol. 17, pp. 163–177 (2003)

    Google Scholar 

  11. Nardelli, E., Proietti, G., Widmayer, P.: How to swap a failing edge of a single source shortest paths tree. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 144–153. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  12. Nardelli, E., Proietti, G., Widmayer, P.: Finding all the best swaps of a minimum diameter spanning tree under transient edge failures. Journal of Graph Algorithms and Applications 5(5), 39–57 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nardelli, E., Proietti, G., Widmayer, P.: Swapping a failing edge of a single source shortest paths tree is good and fast. Algorithmica 36(4), 361–374 (2003)

    Article  MathSciNet  Google Scholar 

  14. Pettie, S.: Sensitivity analysis of minimum spanning trees in sub-inverse-Ackermann time. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 964–973. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Proietti, G.: Dynamic maintenance versus swapping: an experimental study on shortest paths trees. In: Näher, S., Wagner, D. (eds.) WAE 2000. LNCS, vol. 1982, pp. 207–217. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  16. Wu, B.Y., Hsiao, C.-Y., Chao, K.-M.: The swap edges of a multiple-sources routing tree. Algorithmica 50(3), 299–311 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tarjan, R.E.: Sensitivity analysis of minimum spanning trees and shortest path trees. Inf. Process. Lett. 14(1), 30–33 (1982)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bilò, D., Gualà, L., Proietti, G. (2013). A Faster Computation of All the Best Swap Edges of a Shortest Paths Tree. In: Bodlaender, H.L., Italiano, G.F. (eds) Algorithms – ESA 2013. ESA 2013. Lecture Notes in Computer Science, vol 8125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40450-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40450-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40449-8

  • Online ISBN: 978-3-642-40450-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics