Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Characterizing Compatibility and Agreement of Unrooted Trees via Cuts in Graphs

  • Conference paper
Algorithms in Bioinformatics (WABI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8126))

Included in the following conference series:

  • 2059 Accesses

Abstract

Deciding whether there is a single tree —a supertree— that summarizes the evolutionary information in a collection of unrooted trees is a fundamental problem in phylogenetics. We consider two versions of this question: agreement and compatibility. In the first, the supertree is required to reflect precisely the relationships among the species exhibited by the input trees. In the second, the supertree can be more refined than the input trees.

Tree compatibility can be characterized in terms of the existence of a specific kind of triangulation in a structure known as the display graph. Alternatively, it can be characterized as a chordal graph sandwich problem in a structure known as the edge label intersection graph. Here, we show that the latter characterization yields a natural characterization of compatibility in terms of minimal cuts in the display graph, which is closely related to compatibility of splits. We then derive a characterization for agreement.

This work was supported in part by the National Science Foundation under grants CCF-1017189 and DEB-0829674.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aho, A., Sagiv, Y., Szymanski, T., Ullman, J.: Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. SIAM J. Comput. 10(3), 405–421 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12(2), 308–340 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: Grouping the minimal separators. SIAM J. Comput. 31(1), 212–232 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bryant, D., Lagergren, J.: Compatibility of unrooted phylogenetic trees is FPT. Theor. Comput. Sci. 351, 296–302 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buneman, P.: The recovery of trees from measures of dissimilarity. In: Mathematics in the Archaeological and Historical Sciences, pp. 387–395. Edinburgh University Press, Edinburgh (1971)

    Google Scholar 

  6. Courcelle, B.: The monadic second-order logic of graphs I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gordon, A.D.: Consensus supertrees: The synthesis of rooted trees containing overlapping sets of labelled leaves. Journal of Classification 9, 335–348 (1986)

    Article  Google Scholar 

  8. Gusfield, D.: The multi-state perfect phylogeny problem with missing and removable data: Solutions via integer-programming and chordal graph theory. J. Comput. Biol. 17(3), 383–399 (2010)

    Article  MathSciNet  Google Scholar 

  9. Gysel, R., Stevens, K., Gusfield, D.: Reducing problems in unrooted tree compatibility to restricted triangulations of intersection graphs. In: Raphael, B., Tang, J. (eds.) WABI 2012. LNCS, vol. 7534, pp. 93–105. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Heggernes, P.: Minimal triangulations of graphs: A survey. Discrete Math. 306(3), 297 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ng, M.P., Wormald, N.C.: Reconstruction of rooted trees from subtrees. Discrete Applied Mathematics 69(1-2), 19–31 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Parra, A., Scheffler, P.: Characterizations and algorithmic applications of chordal graph embeddings. Discrete Appl. Math. 79(1-3), 171–188 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Semple, C., Steel, M.: Phylogenetics. Oxford Lecture Series in Mathematics. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  14. Steel, M.A.: The complexity of reconstructing trees from qualitative characters and subtrees. J. Classif. 9, 91–116 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Vakati, S., Fernández-Baca, D.: Graph triangulations and the compatibility of unrooted phylogenetic trees. Appl. Math. Lett. 24(5), 719–723 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vakati, S., Fernández-Baca, D. (2013). Characterizing Compatibility and Agreement of Unrooted Trees via Cuts in Graphs. In: Darling, A., Stoye, J. (eds) Algorithms in Bioinformatics. WABI 2013. Lecture Notes in Computer Science(), vol 8126. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40453-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40453-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40452-8

  • Online ISBN: 978-3-642-40453-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics