Abstract
The sheer amounts of biological data that are generated in recent years have driven the development of network analysis tools to facilitate the interpretation and representation of these data. A fundamental challenge in this domain is the reconstruction of a protein-protein subnetwork that underlies a process of interest from a genome-wide screen of associated genes. Despite intense work in this area, current algorithmic approaches are largely limited to analyzing a single screen and are, thus, unable to account for information on condition-specific genes, or reveal the dynamics (over time or condition) of the process in question. Here we propose a novel formulation for network reconstruction from multiple-condition data and devise an efficient integer program solution for it. We apply our algorithm to analyze the response to influenza infection in humans over time as well as to analyze a pair of ER export related screens in humans. By comparing to an extant, single-condition tool we demonstrate the power of our new approach in integrating data from multiple conditions in a compact and coherent manner, capturing the dynamics of the underlying processes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beisser, D., Klau, G., Dandekar, T., Mueller, T., Dittrich, M.: BioNet an R-package for the functional analysis of biological networks. Bioinformatics 26, 1129–1130 (2010)
Huang, S., Fraenkel, E.: Integrating proteomic, transcriptional, and interactome data reveals hidden components of signaling and regulatory networks. Sci. Signal. 2(81), ra40 (2009)
Lotem, E., Riva, L., Su, L., Gitler, A., Cashikar, A., King, O., Auluck, P., Geddie, M., Valastyan, J., Karger, D., Lindquist, S., Fraenkel, E.: Bridging high-throughput genetic and transcriptional data reveals cellular responses to alpha-synuclein toxicity. Nature Genetics 41, 316–323 (2009)
Yosef, N., Zalckvar, E., Rubinstein, A., Homilius, M., Atias, N., Vardi, L., Berman, I., Zur, H., Kimchi, A., Ruppin, E., Sharan, R.: ANAT: A tool for constructing and analyzing functional protein networks. Sci. Signal. 4 (2011)
Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman & Co. (1979)
Shapira, S., Gat-Viks, I., Shum, B., Dricot, A., Degrace, M., Liguo, W., Gupta, P., Hao, T., Silver, S., Root, D., Hill, D., Regev, A., Hacohen, N.: A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection. Cell 139(7), 1255–1267 (2009)
Engelhardt, O., Sirma, H., Pandolfi, P., Haller, O.: Mx1 GTPase accumulates in distinct nuclear domains and inhibits influenza A virus in cells that lack promyelocytic leukaemia protein nuclear bodies. J. Gen. Virol. 85(8), 2315–2326 (2004)
Wagner, S., Beli, P., Weinert, B., Nielsen, M., Cox, J., Mann, M., Choudhary, C.: A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol. Cell. Proteomics 10(10) (2011)
Watson, P., Townley, A., Koka, P., Palmer, K., Stephens, D.: Sec16 defines endoplasmic reticulum exit sites and is required for secretory cargo export in mammalian cells. Traffic 7(12), 1678–1687 (2006)
Farhan, H., Wendeler, M., Mitrovic, S., Fava, E., Silberberg, Y., Sharan, R., Zerial, M., Hauri, H.: MAPK signaling to the early secretory pathway revealed by kinase/phosphatase functional screening. J. Cell. Biol. 189, 997–1011 (2010)
Simpson, J., Joggerst, B., Laketa, V., Verissimo, F., Cetin, C., Erfle, H., Bexiga, M., Singan, V., Hériché, J., Neumann, B., Mateos, A., Blake, J., Bechtel, S., Benes, V., Wiemann, S., Ellenberg, J., Pepperkok, R.: Genome-wide RNAi screening identifies human proteins with a regulatory function in the early secretory pathway. Nat. Cell Biol. 14(7), 764–774 (2012)
Ishihara, N., Hamasaki, M., Yokota, S., Suzuki, K., Kamada, Y., Kihara, A., Yoshimori, T., Noda, T., Ohsumi, Y.: Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion. Mol. Biol. Cell. 12(11), 3690–3702 (2001)
Mizushima, N.: The role of the Atg1/ULK1 complex in autophagy regulation. Curr. Opin. Cell Biol. 22(2), 132–139 (2010)
Hamasaki, M., Furuta, N., Matsuda, A., Nezu, A., Yamamoto, A., Fujita, N., Oomori, H., Noda, T., Haraguchi, T., Hiraoka, Y., Amano, A., Yoshimori, T.: Autophagosomes form at ER-mitochondria contact sites. Nature 495(7441), 389–393 (2013)
Itakura, E., Mizushima, N.: Syntaxin 17: The autophagosomal SNARE. Autophagy 9(6) (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mazza, A., Gat-Viks, I., Farhan, H., Sharan, R. (2013). A Minimum-Labeling Approach for Reconstructing Protein Networks across Multiple Conditions. In: Darling, A., Stoye, J. (eds) Algorithms in Bioinformatics. WABI 2013. Lecture Notes in Computer Science(), vol 8126. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40453-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-40453-5_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40452-8
Online ISBN: 978-3-642-40453-5
eBook Packages: Computer ScienceComputer Science (R0)