Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Diffusion of Viral Content in Multi-layered Social Networks

  • Conference paper
Computational Collective Intelligence. Technologies and Applications (ICCCI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8083))

Included in the following conference series:

Abstract

Modelling the diffusion of information is one of the key areas related to activity within social networks. In this field, there is recent research associated with the use of community detection algorithms and the analysis of how the structure of communities is affecting the spread of information. The purpose of this article is to examine the mechanisms of diffusion of viral content with particular emphasis on cross community diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bampo, M., et al.: The Effects of the Social Structure of Digital Networks on Viral Marketing Performance. Information Systems Research 19(3), 273–290 (2008)

    Article  Google Scholar 

  2. Barbieri, N., Bonchi, F., Manco, G.: Cascade-based Community Detection. In: Proceedings of the 6th ACM International Conference on Web Search and Data Mining (WSDM 2013). ACM, Rome (2013)

    Google Scholar 

  3. Belák, V., Lam, S., Hayes, C.: Cross-Community Influence in Discussion Fora. In: ICWSM (2012)

    Google Scholar 

  4. Belák, V., Lam, S., Hayes, C.: Towards Maximising Cross-Community Information Diffusion. In: Proceedings of ASONAM 2012, pp. 171–178 (2012)

    Google Scholar 

  5. Blondel, V.D., et al.: Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment 10, P10008 (2008)

    Google Scholar 

  6. Bródka, P., Kazienko, P., Musiał, K., Skibicki, K.: Analysis of Neighbourhoods in Multi-layered Dynamic Social Networks. International Journal of Computational Intelligence Systems 5(3), 582–596 (2012)

    Article  Google Scholar 

  7. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press (2010)

    Google Scholar 

  8. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3-5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  9. Goyal, A., et al.: On Minimizing Budget and Time in Influence Propagation over Social Networks. In: Social Network Analysis and Mining. Springer (2012)

    Google Scholar 

  10. Jankowski, J., Michalski, R., Kazienko, P.: The Multidimensional Study of Viral Campaigns as Branching Processes. In: Aberer, K., Flache, A., Jager, W., Liu, L., Tang, J., Guéret, C. (eds.) SocInfo 2012. LNCS, vol. 7710, pp. 462–474. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence through a social network. In: KDD, pp. 137–146 (2003)

    Google Scholar 

  12. Ma, H., Yang, H., Lyu, M.R., King, I.: Mining social networks using heat diffusion processes for marketing candidates selection. In: Proceedings of the 17th ACM Conf. on Information and Knowledge Management, pp. 233–242 (2008)

    Google Scholar 

  13. Najar, A., Denoyer, L., Gallinari, P.: Predicting information diffusion on social networks with partial knowledge. In: WWW, pp. 1197–1204 (2012)

    Google Scholar 

  14. Wang, Y., et al.: Community-based greedy algorithm for mining top-K influential nodes in mobile social networks. In: ACM SIGKDD 2010, pp. 1039–1048. ACM, New York (2010)

    Google Scholar 

  15. Watts, D., Strogatz, S.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jankowski, J., Kozielski, M., Filipowski, W., Michalski, R. (2013). The Diffusion of Viral Content in Multi-layered Social Networks. In: Bǎdicǎ, C., Nguyen, N.T., Brezovan, M. (eds) Computational Collective Intelligence. Technologies and Applications. ICCCI 2013. Lecture Notes in Computer Science(), vol 8083. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40495-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40495-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40494-8

  • Online ISBN: 978-3-642-40495-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics