Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Increasing Illumination Invariance of SURF Feature Detector through Color Constancy

  • Conference paper
Progress in Artificial Intelligence (EPIA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8154))

Included in the following conference series:

Abstract

Most of the original image feature detectors are not able to cope with large photometric variations, and their extensions that should improve detection eventually increase the computational cost and introduce more noise to the system. Here we extend the original SURF algorithm increasing its invariance to illumination changes. Our approach uses the local space average color descriptor as working space to detect invariant features. A theoretical analysis demonstrates the impact of distinct photometric variations on the response of blob-like features detected with the SURF algorithm. Experimental results demonstrate the effectiveness of the approach in several illumination conditions including the presence of two or more distinct light sources, variations in color, in offset and scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008)

    Article  Google Scholar 

  2. Ancuti, C., Bekaert, P.: Sift-cch: Increasing the sift distinctness by color co-occurrence histograms. In: International Symposium on Image and Signal Processing and Analysis, Istanbul, Turkey, September 27-29, pp. 130–135 (2007)

    Google Scholar 

  3. Fan, P., Men, A.D., Chen, M.Y., Yang, B.: Color-surf: A surf descriptor with local kernel color histograms. In: IEEE International Conference on Network Infrastructure and Digital Content, Beijing, China, November 6-8, pp. 726–730 (2009)

    Google Scholar 

  4. Abdel-Hakim, A.E., Farag, A.A.: Csift: A sift descriptor with color invariant characteristics. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition - CVPR, June 17-22, vol. 2, pp. 1978–1983. IEEE Computer Society, New York (2006)

    Google Scholar 

  5. Burghouts, G.J., Geusebroek, J.M.: Performance evaluation of local colour invariants. Computer Vision and Image Understanding 113, 48–62 (2009)

    Article  Google Scholar 

  6. Bosch, A., Zisserman, A., Muñoz, X.: Scene classification via pLSA. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 517–530. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. van de Sande, K.E.A., Gevers, T., Snoek, C.G.M.: Evaluating color descriptors for object and scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(9), 1582–1596 (2010)

    Article  Google Scholar 

  8. Buluswar, S.D., Draper, B.A.: Color recognition in outdoor images. In: International Conference on Computer Vision, Bombay, India, January 04-07, pp. 171–177 (1998)

    Google Scholar 

  9. Finlayson, G.D., Hordley, S.D., Xu, R.: Convex programming colour constancy with a diagonal-offset model. In: IEEE International Conference on Image Processing - ICIP, Genova, Italy, September 11-14, vol. 3, pp. III–948–III–951 (2005)

    Google Scholar 

  10. van de Weijer, J., Gevers, T., Gijsenij, A.: Edge-based color constancy. IEEE Transactions on Image Processing 16(9), 2207–2214 (2007)

    Article  MathSciNet  Google Scholar 

  11. Buchsbaum, G.: A spatial processor model for object color-perception. Journal of the Franklin Institute-Engineering and Applied Mathematics 310(1), 1–26 (1980)

    Article  MathSciNet  Google Scholar 

  12. Ebner, M.: How does the brain arrive at a color constant descriptor? In: Mele, F., Ramella, G., Santillo, S., Ventriglia, F. (eds.) BVAI 2007. LNCS, vol. 4729, pp. 84–93. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Zeki, S., Marini, L.: Three cortical stages of colour processing in the human brain. Brain 121, 1669–1685 (1998)

    Article  Google Scholar 

  14. Gijsenij, A., Gevers, T., van de Weijer, J.: Generalized gamut mapping using image derivative structures for color constancy. International Journal of Computer Vision 86(2-3), 127–139 (2010)

    Article  Google Scholar 

  15. Barnard, K., Cardei, V., Funt, B.: A comparison of computational color constancy algorithms - part i: Methodology and experiments with synthesized data. IEEE Transactions on Image Processing 11(9), 972–984 (2002)

    Article  Google Scholar 

  16. Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. International Journal of Computer Vision 37(2), 151–172 (2000)

    Article  MATH  Google Scholar 

  17. Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.M.: The amsterdam library of object images. International Journal of Computer Vision 61(1), 103–112 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Petry, M.R., Moreira, A.P., Reisinst, L.P. (2013). Increasing Illumination Invariance of SURF Feature Detector through Color Constancy. In: Correia, L., Reis, L.P., Cascalho, J. (eds) Progress in Artificial Intelligence. EPIA 2013. Lecture Notes in Computer Science(), vol 8154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40669-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40669-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40668-3

  • Online ISBN: 978-3-642-40669-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics