Abstract
Metaheuristics have been successfully applied to quite a lot of services, systems, and products frequently found in our daily life. Until now, none of the metaheuristics ever proposed are perfect for all the optimization problems; rather, each algorithm has its pros and cons. Although several high-performance metaheuristics exist, there is still plenty of room to improve the final result they produce and the computation time they take. Since 2001, quite a few number of novel metaheuristics have been developed to provide a better way for solving the optimization problems. A brief review for eight of these novel metaheuristics is given in this paper. To evaluate the performance of these algorithms, we apply them to a well-known combinatorial optimization problem, data clustering, and the results are analyzed and discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Glover, F.: Future paths for integer programming and links to artificial intelligence. Computers & Operations Research 13(5), 533–549 (1986)
Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys 35(3), 268–308 (2003)
William, Welch, J.: Algorithmic complexity: Three np-hard problems in computational statistics. Journal of Statistical Computation and Simulation 15(1), 17–25 (1982)
Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. WH Freeman and Company, New York (1990)
Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing Surveys 31(3), 264–323 (1999)
Xu, R., Wunsch II, D.: Survey of clustering algorithms. IEEE Transactions on Neural Networks 16(3), 645–678 (2005)
Rai, P., Singh, S.: A survey of clustering techniques. International Journal of Computer Applications 7(12), 156–162 (2010)
Carpineto, C., Osiński, S., Romano, G., Weiss, D.: A survey of web clustering engines. ACM Computing Surveys 41(3), 17:1–17:38 (2009)
Xu, W., Liu, X., Gong, Y.: Document clustering based on non-negative matrix factorization. In: Proceedings of Conference on Research and Development in Information Retrieval, New York, NY, USA, pp. 267–273 (2003)
Getz, G., Gal, H., Kela, I., Notterman, D.A., Domany, E.: Coupled two-way clustering analysis of breast cancer and colon cancer gene expression data. Bioinformatics 19(9), 1079–1089 (2003)
Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: A literature survey. ACM Computing Surveys 35(4), 399–458 (2003)
Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Computing Surveys 31(3), 264–323 (1999)
Xu, R., Wunsch II, D.: Survey of clustering algorithms. IEEE Transaction on Neural Networks 16(3), 645–678 (2005)
Bianchi, L., Dorigo, M., Gambardella, L., Gutjahr, W.: A survey on metaheuristics for tochastic combinatorial optimization. Natural Computing 8, 239–287 (2009)
Puchinger, J., Raidl, G.R.: Combining metaheuristics and exact algorithms in combinatorial optimization: A survey and classification. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3562, pp. 41–53. Springer, Heidelberg (2005)
Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical Report, Erciyes University, Engineering Faculty, Computer Engineering (2005)
Yang, X.-S.: A new metaheuristic bat-inspired algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) NICSO 2010. SCI, vol. 284, pp. 65–74. Springer, Heidelberg (2010)
de Oliveira, D.R., Parpinelli, R.S., Lopes, H.S.: Bioluminescent Swarm Optimization Algorithm. Evolutionary Algorithms (2011)
Yang, X.-S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidelberg (2009)
Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: A Gravitational Search Algorithm. Information Sciences 179(13), 2232–2248 (2009)
Abbass, H.: MBO: marriage in honey bees optimization-a Haplometrosis polygynous swarming approach. In: Proceedings of Computation Congress on Evolutionary Computation, vol. 1, pp. 207–214 (2001)
Geem, Z.W., Kim, J.H., Loganathan, G.: A new heuristic optimization algorithm: Harmony search. Simulation 76(2), 60–68 (2001)
Atashpaz-Gargari, E., Lucas, C.: Imperialist competitive algorithm: An algrorithm for optimization inspired by imperialistic competition. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 4661–4667 (2007)
Pan, Q.-K., Tasgetiren, M.F., Suganthan, P., Chua, T.: A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem. Information Sciences 181(12), 2455–2468 (2011)
Karaboga, D., Ozturk, C.: A novel clustering approach: artificial Bee Colony (ABC) algorithm. Applied Soft Computing 11(1), 652–657 (2011)
Zhang, Y., Wu, L., Wang, S., Huo, Y.: Chaotic artificial bee colony used for cluster analysis. Intelligent Computing and Information Science 134, 205–211 (2011)
Akay, B., Karaboga, D.: Parameter tuning for the artificial bee colony algorithm. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS, vol. 5796, pp. 608–619. Springer, Heidelberg (2009)
Akay, B., Karaboga, D.: A modified artificial bee colony algorithm for real parameter optimization. Information Sciences 192, 120–142 (2012)
Khan, K., Nikov, A., Sahai, A.: A fuzzy bat clustering method for ergonomic screening of office workplaces. In: Dicheva, D., Markov, Z., Stefanova, E. (eds.) Software, Services and Semantic Technologies S3T 2011. AISC, vol. 101, pp. 59–66. Springer, Heidelberg (2011)
Yang, X.-S., Gandomi, A.H.: Bat algorithm: a novel approach for global engineering optimization. Engineering Computations 29(5), 464–483 (2012)
Yang, X.-S.: Bat algorithm for multi-objective optimization. International Journal of Bio-Inspired Computation 3(5), 4267–4274 (2011)
Damodaram, R., Valarmathi, M.L.: Phishing website detection and optimization using modified bat algorithm. International Journal of Engineering Research and Applications 2(1), 870–876 (2012)
Krishnanand, K., Ghose, D.: Detection of multiple source locations using a glowworm metaphor with applications to collective robotics. In: Proceedings of Computation Congress on Swarm Intelligence Symposium, pp. 84–91 (2005)
Krishnanand, K., Ghose, D.: Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions. Swarm Intelligence 3, 87–124 (2009)
Yang, X.-S., Deb, S.: Eagle strategy using lévy walk and firefly algorithms for stochastic optimization. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) NICSO 2010. SCI, vol. 284, pp. 101–111. Springer, Heidelberg (2010)
Gandomi, A., Yang, X.-S., Talatahari, S., Alavi, A.: Firey algorithm with chaos. Communications in Nonlinear Science and Numerical Simulation (2012)
Yang, X.-S.: Firey algorithm, lévy ights and global optimization. In: Research and Development in Intelligent Systems, pp. 209–218 (2010)
Giannakouris, G., Vassiliadis, V., Dounias, G.: Experimental study on a hybrid nature-inspired algorithm for financial portfolio optimization. In: Konstantopoulos, S., Perantonis, S., Karkaletsis, V., Spyropoulos, C.D., Vouros, G. (eds.) SETN 2010. LNCS, vol. 6040, pp. 101–111. Springer, Heidelberg (2010)
Łukasik, S., Żak, S.: Firefly algorithm for continuous constrained optimization tasks. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS, vol. 5796, pp. 97–106. Springer, Heidelberg (2009)
Sarafrazi, S., Nezamabadi-pour, H., Saryazdi, S.: Disruption: A new operator in gravitational search algorithm. Scientia Iranica 18(3), 539–548 (2011)
Askari, H., Zahiri, S.-H.: Decision function estimation using intelligent gravitational search algorithm. International Journal of Machine Learning and Cybernetics 3, 163–172 (2012)
Li, C., Zhou, J.: Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm. Energy Conversion and Management 52(1), 374–381 (2011)
Marinakis, Y., Marinaki, M., Matsatsinis, N.F.: A hybrid clustering algorithm based on honey bees mating optimization and greedy randomized adaptive search procedure. In: Maniezzo, V., Battiti, R., Watson, J.-P. (eds.) LION 2007 II. LNCS, vol. 5313, pp. 138–152. Springer, Heidelberg (2008)
Niknam, T.: Application of honey-bee mating optimization on state estimation of a power distribution system including distributed generators. Journal of Zhejiang University - Science A 9, 1753–1764 (2008)
Chang, H.: Converging marriage in honey-bees optimization and application to stochastic dynamic programming. Journal of Global Optimization 35, 423–441 (2006)
Marinakis, Y., Marinaki, M., Dounias, G.: Honey bees mating optimization algorithm for the euclidean traveling salesman problem. Information Sciences 181(20), 4684–4698 (2011)
Geem, Z.W.: Music-Inspired Harmony Search Algorithm: Theory and Applications. Springer (2009)
Fesanghary, M., Mahdavi, M., Minary-Jolandan, M., Alizadeh, Y.: Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems. In: Computer Methods in Applied Mechanics and Engineering, vol. 197(3340), pp. 3080–3091 (2008)
Qi Li, H., Li, L.: A novel hybrid particle swarm optimization algorithm combined with harmony search for high dimensional optimization problems. In: International Conference on Intelligent Pervasive Computing, pp. 94–97 (2007)
Wang, C.-M., Huang, Y.-F.: Self-adaptive harmony search algorithm for optimization. Expert Systems with Applications 37(4), 2826–2837 (2010)
Omran, M.G., Mahdavi, M.: Global-best harmony search. Applied Mathematics and Computation 198(2), 643–656 (2008)
Jaberipour, M., Khorram, E.: Two improved harmony search algorithms for solving engineering optimization problems. Communications in Nonlinear Science and Numerical Simulation 15(11), 3316–3331 (2010)
Pan, Q.-K., Suganthan, P., Tasgetiren, M.F., Liang, J.: A self-adaptive global best harmony search algorithm for continuous optimization problems. Applied Mathematics and Computation 216(3), 830–848 (2010)
Al-Betar, M.A., Khader, A.T., Liao, I.Y.: A harmony search with multi-pitch adjusting rate for the university course timetabling. In: Geem, Z.W. (ed.) Recent Advances In Harmony Search Algorithm. SCI, vol. 270, pp. 147–161. Springer, Heidelberg (2010)
Abdechiri, M., Faez, K., Bahrami, H.: Neural network learning based on chaotic imperialist competitive algorithm. In: Proceedings of the International Workshop on Intelligent Systems and Applications, pp. 1–5 (2010)
Duan, H., Xu, C., Liu, S., Shao, S.: Template matching using chaotic imperialist competitive algorithm. Pattern Recognition Letters 31(13), 1868–1875 (2010)
Talatahari, S., Azar, B.F., Sheikholeslami, R., Gandomi, A.: Imperialist competitive algorithm combined with chaos for global optimization. Communications in Nonlinear Science and Numerical Simulation 17(3), 1312–1319 (2012)
Abdechiri, M., Faez, K., Bahrami, H.: Adaptive imperialist competitive algorithm (AICA). In: Proceedings of the International Conference on Cognitive Informatics, pp. 940–945 (2010)
Zhang, Y., Wang, Y., Peng, C.: Improved imperialist competitive algorithm for constrained optimization. In: Proceedings of the International Forum on Computer Science-Technology and Applications, vol. 1, pp. 204–207 (2009)
UCI-machine learning repository, http://archive.ics.uci.edu/ml/
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tsai, CW., Huang, WC., Chiang, MC. (2014). Recent Development of Metaheuristics for Clustering. In: Park, J., Adeli, H., Park, N., Woungang, I. (eds) Mobile, Ubiquitous, and Intelligent Computing. Lecture Notes in Electrical Engineering, vol 274. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40675-1_93
Download citation
DOI: https://doi.org/10.1007/978-3-642-40675-1_93
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40674-4
Online ISBN: 978-3-642-40675-1
eBook Packages: EngineeringEngineering (R0)