Abstract
Previous work in the literature has been aimed at exploring tag clouds to improve image search and potentially increase retrieval performance. However, to date none has considered the idea of building tag clouds derived from relevance feedback. We propose a simple approach to such an idea, where the tag cloud gives more importance to the words from the relevant images than the non-relevant ones. A preliminary study with 164 queries inspected by 14 participants over a 30M dataset of automatically annotated images showed that 1) tag clouds derived this way are found to be informative: users considered roughly 20% of the presented tags to be relevant for any query at any time; and 2) the importance given to the tags correlates with user judgments: tags ranked in the first positions tended to be perceived more often as relevant to the topic that users had in mind.
Prototype available at http://risenet.iti.upv.es/rise/tc
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Begelman, G., Keller, P., Smadja, F.: Automated tag clustering: Improving search and exploration in the tag space. In: Collaborative Web Tagging (2006)
Callegari, J., Morreale, P.: Assessment of the utility of tag clouds for faster image retrieval. In: Proc. MIR (2010)
Ganchev, K., Hall, K., McDonald, R., Petrov, S.: Using search-logs to improve query tagging. In: Proc. ACL (2012)
Hassan-Montero, Y., Herrero-Solana, V.: Improving tag-clouds as visual information retrieval interfaces. In: Proc. InSciT (2006)
Leiva, L.A., Villegas, M., Paredes, R.: Query refinement suggestion in multimodal interactive image retrieval. In: Proc. ICMI (2011)
Liu, D., Hua, X.-S., Yang, L., Wang, M., Zhang, H.-J.: Tag ranking. In: Proc. WWW (2009)
Overell, S., Sigurbjörnsson, B., van Zwol, R.: Classifying tags using open content resources. In: Proc. WSDM (2009)
Rui, Y., Huang, T.S., Ortega, M., Mehrotra, S.: Relevance feedback: A power tool for interactive content-based image retrieval. T. Circ. Syst. Vid. 8(5) (1998)
Sigurbjörnsson, B., van Zwol, R.: Flickr tag recommendation based on collective knowledge. In: Proc. WWW (2008)
Trattner, C., Lin, Y.-L., Parra, D., Yue, Z., Real, W., Brusilovsky, P.: Evaluating tag-based information access in image collections. In: Proc. HT (2012)
Villegas, M., Paredes, R.: Image-text dataset generation for image annotation and retrieval. In: Proc. CERI (2012)
Zhang, C., Chai, J.Y., Jin, R.: User term feedback in interactive text-based image retrieval. In: Proc. SIGIR (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Leiva, L.A., Villegas, M., Paredes, R. (2013). Relevant Clouds: Leveraging Relevance Feedback to Build Tag Clouds for Image Search. In: Forner, P., Müller, H., Paredes, R., Rosso, P., Stein, B. (eds) Information Access Evaluation. Multilinguality, Multimodality, and Visualization. CLEF 2013. Lecture Notes in Computer Science, vol 8138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40802-1_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-40802-1_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40801-4
Online ISBN: 978-3-642-40802-1
eBook Packages: Computer ScienceComputer Science (R0)