Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Relevant Clouds: Leveraging Relevance Feedback to Build Tag Clouds for Image Search

  • Conference paper
Information Access Evaluation. Multilinguality, Multimodality, and Visualization (CLEF 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8138))

  • 1834 Accesses

Abstract

Previous work in the literature has been aimed at exploring tag clouds to improve image search and potentially increase retrieval performance. However, to date none has considered the idea of building tag clouds derived from relevance feedback. We propose a simple approach to such an idea, where the tag cloud gives more importance to the words from the relevant images than the non-relevant ones. A preliminary study with 164 queries inspected by 14 participants over a 30M dataset of automatically annotated images showed that 1) tag clouds derived this way are found to be informative: users considered roughly 20% of the presented tags to be relevant for any query at any time; and 2) the importance given to the tags correlates with user judgments: tags ranked in the first positions tended to be perceived more often as relevant to the topic that users had in mind.

Prototype available at http://risenet.iti.upv.es/rise/tc

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Begelman, G., Keller, P., Smadja, F.: Automated tag clustering: Improving search and exploration in the tag space. In: Collaborative Web Tagging (2006)

    Google Scholar 

  2. Callegari, J., Morreale, P.: Assessment of the utility of tag clouds for faster image retrieval. In: Proc. MIR (2010)

    Google Scholar 

  3. Ganchev, K., Hall, K., McDonald, R., Petrov, S.: Using search-logs to improve query tagging. In: Proc. ACL (2012)

    Google Scholar 

  4. Hassan-Montero, Y., Herrero-Solana, V.: Improving tag-clouds as visual information retrieval interfaces. In: Proc. InSciT (2006)

    Google Scholar 

  5. Leiva, L.A., Villegas, M., Paredes, R.: Query refinement suggestion in multimodal interactive image retrieval. In: Proc. ICMI (2011)

    Google Scholar 

  6. Liu, D., Hua, X.-S., Yang, L., Wang, M., Zhang, H.-J.: Tag ranking. In: Proc. WWW (2009)

    Google Scholar 

  7. Overell, S., Sigurbjörnsson, B., van Zwol, R.: Classifying tags using open content resources. In: Proc. WSDM (2009)

    Google Scholar 

  8. Rui, Y., Huang, T.S., Ortega, M., Mehrotra, S.: Relevance feedback: A power tool for interactive content-based image retrieval. T. Circ. Syst. Vid. 8(5) (1998)

    Google Scholar 

  9. Sigurbjörnsson, B., van Zwol, R.: Flickr tag recommendation based on collective knowledge. In: Proc. WWW (2008)

    Google Scholar 

  10. Trattner, C., Lin, Y.-L., Parra, D., Yue, Z., Real, W., Brusilovsky, P.: Evaluating tag-based information access in image collections. In: Proc. HT (2012)

    Google Scholar 

  11. Villegas, M., Paredes, R.: Image-text dataset generation for image annotation and retrieval. In: Proc. CERI (2012)

    Google Scholar 

  12. Zhang, C., Chai, J.Y., Jin, R.: User term feedback in interactive text-based image retrieval. In: Proc. SIGIR (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leiva, L.A., Villegas, M., Paredes, R. (2013). Relevant Clouds: Leveraging Relevance Feedback to Build Tag Clouds for Image Search. In: Forner, P., Müller, H., Paredes, R., Rosso, P., Stein, B. (eds) Information Access Evaluation. Multilinguality, Multimodality, and Visualization. CLEF 2013. Lecture Notes in Computer Science, vol 8138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40802-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40802-1_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40801-4

  • Online ISBN: 978-3-642-40802-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics