Abstract
In this paper proposes a visual manipulation method that incorporates computation of 3D object position from characteristic disparity of stereo image. First, we proceed to an image revision work using the calibration. To obtain the characteristic disparity, a set of characteristic points, essential to obtain characteristics like center points or corner points are determined from the CAMShift center of left and right images. By iterative computation and tracking in real time, the algorithm is able to robustly provide accurate 3D position of target objects.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lee, S.-J., Won, M.-C.: A vision based people tracking algorithm for mobile robots. In: KSME, pp. 871–874 (2011)
Shapiro, L.G., Stockman, G.C.: Computer Vision. Prentice-Hall (2001)
Lowe, D.G.: Distinctive Image Features from scale-Invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)
Bradski, G.R.: Computer Vision Face Tracking For Use in a Perceptual User. Intel Technology Journal 2(2), 12–26 (1998)
Choi, S., Kim, C.-O., Jeong, J.-N., Yang, G.-W., Kim, H.-S.: Robust Object Tracking and Visual Servoing using Stereo Camera and CAMSHIFT. In: ICROS, vol. 36, pp. 164–169 (2007)
Lee, J.-Y.: Camera Calibration and Distortion Correction. KROS 10(1), 23–29 (2013)
Chang, I.-S., An, T.-K., Park, K.-Y., Park, G.-M.: PTZ Camera Tracking Using CAMShift. KICS 35(3), 271–277 (2010)
Allen, J.G., Xu, R.Y.D., Jin, J.S.: Object Tracking Using CamShift Algorithm and Multiple Quantized Feature Spaces. In: VIP 2003, vol. 36, pp. 3–7 (2003)
Eduardo, R., Isbelle, F.C., Anand, S., Guillaume, S.: Optical Flow-Based Controller for Reactive and Relative Navigation dedicated to a Four Rotor Rotorcraft. In: IEEE/RSJ Int. Conference on Intelligent Robots and Systems, pp. 686–689 (2009)
Duque, D., Santos, H., Cortez, P.: Moving object detection unaffected by cast shadows, highlights, and ghosts. In: Proc. IEEE Int. Conf. Image Processing, vol. 3, pp. 413–416 (2005)
Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge Univ. (2000)
Jain, R., Kasturi, R., Schunk, B.G.: Machine Vision. McGraw-Hill (1995)
Zhang, Z.: A Flexible New Technique for Camera Calibration. IEEE Trans. Pattern Analysis and Machine Intelligence 22(11), 1330–1334 (2000)
Trucco, E., Verri, A.: Introductory Techniques for 3-D Computer Vision. Prentice-Hall (1998)
Open Computer Vision Library | Get Open Computer Vision Library at SourceForge.net, http://sourceforge.net/projects/opencvlibrary
Middlebury Stereo Vision Page: Data, http://cat.middlebury.edu/stereo/data.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Park, KI., Park, CI., Lee, J. (2013). Vision Based People Tracking Using Stereo Camera and Camshift. In: Lee, J., Lee, M.C., Liu, H., Ryu, JH. (eds) Intelligent Robotics and Applications. ICIRA 2013. Lecture Notes in Computer Science(), vol 8102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40852-6_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-40852-6_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40851-9
Online ISBN: 978-3-642-40852-6
eBook Packages: Computer ScienceComputer Science (R0)