Abstract
We propose a method to discover a different kind of influential nodes in a social network, which we call “super-mediators”, i.e., those nodes which play an important role in receiving the information and passing it to other nodes. We mathematically formulate this as a difference maximization problem in the average influence degree with respect to a node removal, i.e., a node that contributes to making the difference large is influential. We further characterize the property of these super-mediators as having both large influence degree, i.e., capable of widely spreading information to other recipient nodes, and large reverse- influence degree, i.e., capable of widely receiving information from other information source nodes. We conducted extensive experiments using three real world social networks and confirmed that this property holds. We further investigated how well the conventional centrality measures capture super-mediators. In short the in-degree centrality is a good measure when the diffusion probability is small and the betweenness centrality is a good measure when the diffusion probability is large, but the super-mediators do depend on the value of the diffusion probability and no single centrality measure works equally well for a wide range of the diffusion probability.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bakshy, E., Hofman, J., Mason, W., Watts, D.: Everyone’s an influencer: Quantifying influences on twitter. In: Proceedings of the 4th International Conference on Web Search and Data Mining (WSDM 2011), pp. 65–74 (2011)
Bakshy, E., Karrer, B., Adamic, L.A.: Social influence and the diffusion of user-created content. In: Proceedings of the 10th ACM Conference on Electronic Commerce, pp. 325–334 (2009)
Dow, P., Adamic, L., Friggeri, A.: The anatomy of large facebook cascades. In: Proceedings of the 7th International AAAI Conference on Weblogs and Social Media, ICWSM (2013)
Goldenberg, J., Libai, B., Muller, E.: Talk of the network: A complex systems look at the underlying process of word-of-mouth. Marketing Letters 12, 211–223 (2001)
Gruhl, D., Guha, R., Liben-Nowell, D., Tomkins, A.: Information diffusion through blogspace. SIGKDD Explorations 6, 43–52 (2004)
Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2003), pp. 137–146 (2003)
Kimura, M., Saito, K., Motoda, H.: Blocking links to minimize contamination spread in a social network. ACM Transactions on Knowledge Discovery from Data 3, 9:1–9:23 (2009)
Kimura, M., Saito, K., Motoda, H.: Efficient estimation of influence functions fot sis model on social networks. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, IJCAI 2009 (2009)
Kimura, M., Saito, K., Nakano, R.: Extracting influential nodes for information diffusion on a social network. In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence (AAAI 2007), pp. 1371–1376 (2007)
Kimura, M., Saito, K., Nakano, R., Motoda, H.: Finding influential nodes in a social network from information diffusion data. In: Proceedings of the 2nd International Workshop on Social Computing, Behavioral Modeling and Prediction (SBP 2009), pp. 138–145 (2009)
Kimura, M., Saito, K., Nakano, R., Motoda, H.: Extracting influential nodes on a social network for information diffusion. Data Mining and Knowledge Discovery 20, 70–97 (2010)
Kleinberg, J.: The convergence of social and technological networks. Communications of ACM 51(11), 66–72 (2008)
Klimt, B., Yang, Y.: The enron corpus: A new dataset for email classification research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004)
Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing. In: Proceedings of the 7th ACM Conference on Electronic Commerce (EC 2006), pp. 228–237 (2006)
Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)
Newman, M.E.J., Forrest, S., Balthrop, J.: Email networks and the spread of computer viruses. Physical Review E 66, 035101 (2002)
Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral marketing. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2002), pp. 61–70 (2002)
Romero, D.M., Meeder, B., Kleinberg, J.: Differences in the mechanics of information diffusion across topics: Idioms, political hashtags, and complex contagion on twitter. In: Proceedings of the 20th International World Wide Web Conference (WWW 2011), pp. 695–704 (2011)
Saito, K., Kimura, M., Motoda, H.: Discovering influential nodes for SIS models in social networks. In: Gama, J., Costa, V.S., Jorge, A.M., Brazdil, P.B. (eds.) DS 2009. LNCS (LNAI), vol. 5808, pp. 302–316. Springer, Heidelberg (2009)
Saito, K., Kimura, M., Ohara, K., Motoda, H.: Learning continuous-time information diffusion model for social behavioral data analysis. In: Zhou, Z.-H., Washio, T. (eds.) ACML 2009. LNCS (LNAI), vol. 5828, pp. 322–337. Springer, Heidelberg (2009)
Saito, K., Kimura, M., Ohara, K., Motoda, H.: Behavioral analyses of information diffusion models by observed data of social network. In: Chai, S.-K., Salerno, J.J., Mabry, P.L. (eds.) SBP 2010. LNCS, vol. 6007, pp. 149–158. Springer, Heidelberg (2010)
Saito, K., Kimura, M., Ohara, K., Motoda, H.: Discovery of super-mediators of information diffusion in social networks. In: Pfahringer, B., Holmes, G., Hoffmann, A. (eds.) DS 2010. LNCS (LNAI), vol. 6332, pp. 144–158. Springer, Heidelberg (2010)
Saito, K., Kimura, M., Ohara, K., Motoda, H.: Which targets to contact first to maximize influence over social network. In: Greenberg, A.M., Kennedy, W.G., Bos, N.D. (eds.) SBP 2013. LNCS, vol. 7812, pp. 359–367. Springer, Heidelberg (2013)
Sheldon, D., Dilkina, B., Elmachtoub, A., Finseth, R., Sabharwal, A., Conrad, J., Gomes, C., Shmoys, D., Allen, W., Amundsen, O., Vaughan, W.: Maximizing the spread of cascades using network design. In: Proceedings of the Twenty-Sixth Annual Conference on Uncertainty in Artificial Intelligence (UAI 2010), pp. 517–526. AUAI Press, Corvallis (2010)
Steeg, G.V., Ghosh, R., Lerman, K.: What stops social epidemics? In: Proceedings of the 5th International AAAI Conference on Weblogs and Social Media (ICWSM), pp. 377–384 (2011)
Watts, D.J.: A simple model of global cascades on random networks. Proceedings of National Academy of Science, USA 99, 5766–5771 (2002)
Watts, D.J., Dodds, P.S.: Influence, networks, and public opinion formation. Journal of Consumer Research 34, 441–458 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Saito, K., Kimura, M., Ohara, K., Motoda, H. (2013). Identifying Super-Mediators of Information Diffusion in Social Networks. In: Fürnkranz, J., Hüllermeier, E., Higuchi, T. (eds) Discovery Science. DS 2013. Lecture Notes in Computer Science(), vol 8140. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40897-7_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-40897-7_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40896-0
Online ISBN: 978-3-642-40897-7
eBook Packages: Computer ScienceComputer Science (R0)