Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Identifying Super-Mediators of Information Diffusion in Social Networks

  • Conference paper
Discovery Science (DS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8140))

Included in the following conference series:

  • 1280 Accesses

Abstract

We propose a method to discover a different kind of influential nodes in a social network, which we call “super-mediators”, i.e., those nodes which play an important role in receiving the information and passing it to other nodes. We mathematically formulate this as a difference maximization problem in the average influence degree with respect to a node removal, i.e., a node that contributes to making the difference large is influential. We further characterize the property of these super-mediators as having both large influence degree, i.e., capable of widely spreading information to other recipient nodes, and large reverse- influence degree, i.e., capable of widely receiving information from other information source nodes. We conducted extensive experiments using three real world social networks and confirmed that this property holds. We further investigated how well the conventional centrality measures capture super-mediators. In short the in-degree centrality is a good measure when the diffusion probability is small and the betweenness centrality is a good measure when the diffusion probability is large, but the super-mediators do depend on the value of the diffusion probability and no single centrality measure works equally well for a wide range of the diffusion probability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bakshy, E., Hofman, J., Mason, W., Watts, D.: Everyone’s an influencer: Quantifying influences on twitter. In: Proceedings of the 4th International Conference on Web Search and Data Mining (WSDM 2011), pp. 65–74 (2011)

    Google Scholar 

  2. Bakshy, E., Karrer, B., Adamic, L.A.: Social influence and the diffusion of user-created content. In: Proceedings of the 10th ACM Conference on Electronic Commerce, pp. 325–334 (2009)

    Google Scholar 

  3. Dow, P., Adamic, L., Friggeri, A.: The anatomy of large facebook cascades. In: Proceedings of the 7th International AAAI Conference on Weblogs and Social Media, ICWSM (2013)

    Google Scholar 

  4. Goldenberg, J., Libai, B., Muller, E.: Talk of the network: A complex systems look at the underlying process of word-of-mouth. Marketing Letters 12, 211–223 (2001)

    Article  Google Scholar 

  5. Gruhl, D., Guha, R., Liben-Nowell, D., Tomkins, A.: Information diffusion through blogspace. SIGKDD Explorations 6, 43–52 (2004)

    Article  Google Scholar 

  6. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2003), pp. 137–146 (2003)

    Google Scholar 

  7. Kimura, M., Saito, K., Motoda, H.: Blocking links to minimize contamination spread in a social network. ACM Transactions on Knowledge Discovery from Data 3, 9:1–9:23 (2009)

    Google Scholar 

  8. Kimura, M., Saito, K., Motoda, H.: Efficient estimation of influence functions fot sis model on social networks. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, IJCAI 2009 (2009)

    Google Scholar 

  9. Kimura, M., Saito, K., Nakano, R.: Extracting influential nodes for information diffusion on a social network. In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence (AAAI 2007), pp. 1371–1376 (2007)

    Google Scholar 

  10. Kimura, M., Saito, K., Nakano, R., Motoda, H.: Finding influential nodes in a social network from information diffusion data. In: Proceedings of the 2nd International Workshop on Social Computing, Behavioral Modeling and Prediction (SBP 2009), pp. 138–145 (2009)

    Google Scholar 

  11. Kimura, M., Saito, K., Nakano, R., Motoda, H.: Extracting influential nodes on a social network for information diffusion. Data Mining and Knowledge Discovery 20, 70–97 (2010)

    Article  MathSciNet  Google Scholar 

  12. Kleinberg, J.: The convergence of social and technological networks. Communications of ACM 51(11), 66–72 (2008)

    Article  Google Scholar 

  13. Klimt, B., Yang, Y.: The enron corpus: A new dataset for email classification research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing. In: Proceedings of the 7th ACM Conference on Electronic Commerce (EC 2006), pp. 228–237 (2006)

    Google Scholar 

  15. Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Newman, M.E.J., Forrest, S., Balthrop, J.: Email networks and the spread of computer viruses. Physical Review E 66, 035101 (2002)

    Article  Google Scholar 

  17. Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral marketing. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2002), pp. 61–70 (2002)

    Google Scholar 

  18. Romero, D.M., Meeder, B., Kleinberg, J.: Differences in the mechanics of information diffusion across topics: Idioms, political hashtags, and complex contagion on twitter. In: Proceedings of the 20th International World Wide Web Conference (WWW 2011), pp. 695–704 (2011)

    Google Scholar 

  19. Saito, K., Kimura, M., Motoda, H.: Discovering influential nodes for SIS models in social networks. In: Gama, J., Costa, V.S., Jorge, A.M., Brazdil, P.B. (eds.) DS 2009. LNCS (LNAI), vol. 5808, pp. 302–316. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Saito, K., Kimura, M., Ohara, K., Motoda, H.: Learning continuous-time information diffusion model for social behavioral data analysis. In: Zhou, Z.-H., Washio, T. (eds.) ACML 2009. LNCS (LNAI), vol. 5828, pp. 322–337. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Saito, K., Kimura, M., Ohara, K., Motoda, H.: Behavioral analyses of information diffusion models by observed data of social network. In: Chai, S.-K., Salerno, J.J., Mabry, P.L. (eds.) SBP 2010. LNCS, vol. 6007, pp. 149–158. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. Saito, K., Kimura, M., Ohara, K., Motoda, H.: Discovery of super-mediators of information diffusion in social networks. In: Pfahringer, B., Holmes, G., Hoffmann, A. (eds.) DS 2010. LNCS (LNAI), vol. 6332, pp. 144–158. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Saito, K., Kimura, M., Ohara, K., Motoda, H.: Which targets to contact first to maximize influence over social network. In: Greenberg, A.M., Kennedy, W.G., Bos, N.D. (eds.) SBP 2013. LNCS, vol. 7812, pp. 359–367. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  24. Sheldon, D., Dilkina, B., Elmachtoub, A., Finseth, R., Sabharwal, A., Conrad, J., Gomes, C., Shmoys, D., Allen, W., Amundsen, O., Vaughan, W.: Maximizing the spread of cascades using network design. In: Proceedings of the Twenty-Sixth Annual Conference on Uncertainty in Artificial Intelligence (UAI 2010), pp. 517–526. AUAI Press, Corvallis (2010)

    Google Scholar 

  25. Steeg, G.V., Ghosh, R., Lerman, K.: What stops social epidemics? In: Proceedings of the 5th International AAAI Conference on Weblogs and Social Media (ICWSM), pp. 377–384 (2011)

    Google Scholar 

  26. Watts, D.J.: A simple model of global cascades on random networks. Proceedings of National Academy of Science, USA 99, 5766–5771 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Watts, D.J., Dodds, P.S.: Influence, networks, and public opinion formation. Journal of Consumer Research 34, 441–458 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saito, K., Kimura, M., Ohara, K., Motoda, H. (2013). Identifying Super-Mediators of Information Diffusion in Social Networks. In: Fürnkranz, J., Hüllermeier, E., Higuchi, T. (eds) Discovery Science. DS 2013. Lecture Notes in Computer Science(), vol 8140. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40897-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40897-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40896-0

  • Online ISBN: 978-3-642-40897-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics