Abstract
We present OpenML, a novel open science platform that provides easy access to machine learning data, software and results to encourage further study and application. It organizes all submitted results online so they can be easily found and reused, and features a web API which is being integrated in popular machine learning tools such as Weka, KNIME, RapidMiner and R packages, so that experiments can be shared easily.
Chapter PDF
Similar content being viewed by others
References
Hand, D.: Classifier technology and the illusion of progress. Statistical Science (January 2006)
Hirsh, H.: Data mining research: Current status and future opportunities. Statistical Analysis and Data Mining 1(2), 104–107 (2008)
Nielsen, M.A.: The future of science: Building a better collective memory. APS Physics 17(10) (2008)
Peng, Y.H., Flach, P.A., Soares, C., Brazdil, P.B.: Improved dataset characterisation for meta-learning. In: Lange, S., Satoh, K., Smith, C.H. (eds.) DS 2002. LNCS, vol. 2534, pp. 141–152. Springer, Heidelberg (2002)
Vanschoren, J., Blockeel, H., Pfahringer, B., Holmes, G.: Experiment databases. A new way to share, organize and learn from experiments. Machine Learning 87(2), 127–158 (2012), https://lirias.kuleuven.be/handle/123456789/297378
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
van Rijn, J.N. et al. (2013). OpenML: A Collaborative Science Platform. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2013. Lecture Notes in Computer Science(), vol 8190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40994-3_46
Download citation
DOI: https://doi.org/10.1007/978-3-642-40994-3_46
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40993-6
Online ISBN: 978-3-642-40994-3
eBook Packages: Computer ScienceComputer Science (R0)