Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Genetic Algorithm for Pancreatic Cancer Diagnosis

  • Conference paper
Engineering Applications of Neural Networks (EANN 2013)

Abstract

Pancreatic cancer is one of the leading causes of cancer-related death in the industrialized countries and it has the least favorable prognosis among various cancer types. In this study we aim to facilitate early detection of the pancreatic cancer by finding minimal set of genetic biomarkers that can be used for establishing diagnosis. We propose a genetic algorithm and we test it on gene expression data of 36 pancreatic ductal adenocarcinoma tumors and matching normal pancreatic tissue samples. Our results show that a minimum group of genes are able to constitute a high reliability pancreatic cancer predictor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jemal, A., Siegel, R., Xu, J., Ward, E.: Cancer statistics. CA Cancer J. Clin. 60(5), 277–300 (2010)

    Article  Google Scholar 

  2. Brandt, R., Grutzmann, R., Bauer, A., Jesnowski, R., Ringel, J., Lohr, M., Pilarsky, C., Hoheisel, J.D.: DNA microarray analysis of pancreatic malignancies. Pancreatology 4(6), 587–597 (2004)

    Article  Google Scholar 

  3. Bauer, A.S., Keller, A., Costello, E., Greenhalf, W., Bier, M., Borries, A., Beier, M., Neoptolemos, J., Buchler, M., Werner, J., Giese, N., Hoheisel, J.D.: Diagnosis of pancreatic ductal adenocarcinoma and chronic pancreatitis by measurement of microRNA abundance in blood and tissue. PLoS One 7(4), e34151 (2012)

    Google Scholar 

  4. Bussom, S., Saif, M.W.: Methods and rationale for the early detection of pancreatic cancer. In: Highlights from the 2010 ASCO Gastrointestinal Cancers Symposium, Orlando, FL, USA, January 22-24, vol. 11(2), pp. 128–130. JOP (2010)

    Google Scholar 

  5. Phan, J.H., Moffitt, R.A., Stokes, T.H., Liu, J., Young, A.N., Nie, S., Wang, M.D.: Convergence of biomarkers, bioinformatics and nanotechnology for individualized cancer treatment. Trends Biotechnol. 27(6), 350–358 (2009)

    Article  Google Scholar 

  6. Edgar, R., Domrachev, M., Lash, A.E.: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30(1), 207–210 (2002)

    Article  Google Scholar 

  7. Badea, L., Herlea, V., Dima, S.O., Dumitrascu, T., Popescu, I.: Combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia. Hepatogastroenterology 55(88), 2016–2027 (2008)

    Google Scholar 

  8. Valentini, G., Tagliaferri, R., Masulli, F.: Computational intelligence and machine learning in bioinformatics. Artif. Intell. Med. 45(2-3), 91–96 (2009)

    Article  Google Scholar 

  9. Bandyopadhyay, S., Pal, S.K.: Classification and Learning Using Genetic Algorithms: Applications in Bioinformatics and Web Intelligence. Natural Computing Series, vol. 311. Springer (2007)

    Google Scholar 

  10. Bäck, T., Fogel, D.B., Michalewicz, Z., Beck, T.: Evolutionary Computation 1: Basic Algorithms and Operators. Institute of Physics Publishing, Bristol (2000)

    Book  MATH  Google Scholar 

  11. Bäck, T., Fogel, D.B., Michalewicz, Z., Beck, T.: Evolutionary Computation 2: Advanced Algorithms and Operators. Institute of Physics Publishing, Bristol (2000)

    Book  MATH  Google Scholar 

  12. Fishman, G.S.: Monte Carlo: Concepts, Algorithms, and Applications. Springer, New York (1995)

    Google Scholar 

  13. Baker, J.E.: Reducing Bias and Inefficiency in the Selection Algorithm. In: 2nd International Conference on Genetic Algorithms and their Application, Cambridge, Massachusetts, USA, pp. 14–21 (1987)

    Google Scholar 

  14. Parker, C.: An Analysis of Performance Measures for Binary Classifiers. In: IEEE 11th International Conference on Data Mining (ICDM), Corvallis, OR, USA, pp. 517–526 (2011)

    Google Scholar 

  15. Xu, K., Cui, J., Olman, V., Yang, Q., Puett, D., Xu, Y.: A comparative analysis of gene-expression data of multiple cancer types. PLoS One 5(10), e13696 (2010)

    Google Scholar 

  16. Crawford, H.C., Scoggins, C.R., Washington, M.K., Matrisian, L.M., Leach, S.D.: Matrix metalloproteinase-7 is expressed by pancreatic cancer precursors and regulates acinar-to-ductal metaplasia in exocrine pancreas. J. Clin. Invest. 109(11), 1437–1444 (2002)

    Google Scholar 

  17. Tan, X., Egami, H., Abe, M., Nozawa, F., Hirota, M., Ogawa, M.: Involvement of MMP-7 in invasion of pancreatic cancer cells through activation of the EGFR mediated MEK-ERK signal transduction pathway. J. Clin. Pathol. 58(12), 1242–1248 (2005)

    Article  Google Scholar 

  18. Doucas, H., Mann, C.D., Sutton, C.D., Garcea, G., Neal, C.P., Berry, D.P., Manson, M.M.: Expression of nuclear Notch3 in pancreatic adenocarcinomas is associated with adverse clinical features, and correlates with the expression of STAT3 and phosphorylated Akt. J. Surg. Oncol. 97(1), 63–68 (2008)

    Article  Google Scholar 

  19. Vo, K., Amarasinghe, B., Washington, K., Gonzalez, A., Berlin, J., Dang, T.P.: Targeting notch pathway enhances rapamycin antitumor activity in pancreas cancers through PTEN phosphorylation. Mol. Cancer 10, 138 (2011)

    Article  Google Scholar 

  20. Biankin, A.V., Waddell, N., Kassahn, K.S., Gingras, M.C., Muthuswamy, L.B., Johns, A.L., Miller, D.K., Wilson, P.J., Patch, A.M., Wu, J., Chang, D.K., Cowley, M.J., Gardiner, B.B., Song, S., Harliwong, I., Idrisoglu, S., Nourse, C., Nourbakhsh, E., Manning, S., Wani, S., Gongora, M., Pajic, M., Scarlett, C.J., Gill, A.J., Pinho, A.V., Rooman, I., Anderson, M., Holmes, O., Leonard, C., Taylor, D., Wood, S., Xu, Q., Nones, K., Fink, J.L., Christ, A., Bruxner, T., Cloonan, N., Kolle, G., Newell, F., Pinese, M., Mead, R.S., Humphris, J.L., Kaplan, W., Jones, M.D., Colvin, E.K., Nagrial, A.M., Humphrey, E.S., Chou, A., Chin, V.T., Chantrill, L.A., Mawson, A., Samra, J.S., Kench, J.G., Lovell, J.A., Daly, R.J., Merrett, N.D., Toon, C., Epari, K., Nguyen, N.Q., Barbour, A., Zeps, N., Kakkar, N., Zhao, F., Wu, Y.Q., Wang, M., Muzny, D.M., Fisher, W.E., Brunicardi, F.C., Hodges, S.E., Reid, J.G., Drummond, J., Chang, K., Han, Y., Lewis, L.R., Dinh, H., Buhay, C.J., Beck, T., Timms, L., Sam, M., Begley, K., Brown, A., Pai, D., Panchal, A., Buchner, N., De Borja, R., Denroche, R.E., Yung, C.K., Serra, S., Onetto, N., Mukhopadhyay, D., Tsao, M.S., Shaw, P.A., Petersen, G.M., Gallinger, S., Hruban, R.H., Maitra, A., Iacobuzio-Donahue, C.A., Schulick, R.D., Wolfgang, C.L., Morgan, R.A., Lawlor, R.T., Capelli, P., Corbo, V., Scardoni, M., Tortora, G., Tempero, M.A., Mann, K.M., Jenkins, N.A., Perez-Mancera, P.A., Adams, D.J., Largaespada, D.A., Wessels, L.F., Rust, A.G., Stein, L.D., Tuveson, D.A., Copeland, N.G., Musgrove, E.A., Scarpa, A., Eshleman, J.R., Hudson, T.J., Sutherland, R.L., Wheeler, D.A., Pearson, J.V., McPherson, J.D., Gibbs, R.A., Grimmond, S.M.: Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491(7424), 399–405 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moschopoulos, C., Popovic, D., Sifrim, A., Beligiannis, G., De Moor, B., Moreau, Y. (2013). A Genetic Algorithm for Pancreatic Cancer Diagnosis. In: Iliadis, L., Papadopoulos, H., Jayne, C. (eds) Engineering Applications of Neural Networks. EANN 2013. Communications in Computer and Information Science, vol 384. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41016-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41016-1_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41015-4

  • Online ISBN: 978-3-642-41016-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics