Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Abstract

Given a schema and a set of concepts, representative of entities in the domain of discourse, schema cover defines correspondences between concepts and parts of the schema. Schema cover aims at interpreting the schema in terms of concepts and thus, vastly simplifying the task of schema integration. In this work we investigate two properties of schema cover, namely completeness and ambiguity. The former measures the part of a schema that can be covered by a set of concepts and the latter examines the amount of overlap between concepts in a cover. To study the tradeoffs between completeness and ambiguity we define a cover model to which previous frameworks are special cases. We analyze the theoretical complexity of variations of the cover problem, some aim at maximizing completeness while others aim at minimizing ambiguity. We show that variants of the schema cover problem are hard problems in general and formulate an exhaustive search solution using integer linear programming. We then provide a thorough empirical analysis, using both real-world and simulated data sets, showing empirically that the integer linear programming solution scales well for large schemata. We also show that some instantiations of the general schema cover problem are more effective than others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Batini, C., Lenzerini, M., Navathe, S.: A comparative analysis of methodologies for database schema integration. ACM Computing Surveys 18(4), 323–364 (1986)

    Article  Google Scholar 

  2. Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. 21st ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, pp. 233–246 (2002)

    Google Scholar 

  3. Bernstein, P., Melnik, S.: Meta data management. In: Proc. 20th Int. Conf. on Data Engineering, tutorial Presentation (2004)

    Google Scholar 

  4. Saha, B., Stanoi, I., Clarkson, K.: Schema covering: a step towards enabling reuse in information integration. In: Proc. 26th Int. Conf. on Data Engineering, pp. 285–296 (2010)

    Google Scholar 

  5. Melnik, S.: Generic Model Management: Concepts and Algorithms. Springer (2004)

    Google Scholar 

  6. Lee, M., Yang, L., Hsu, W., Yang, X.: XCLUST: Clustering XML schemas for effective integration. In: Proceedings of the International Conference on Information and Knowledge Management (CIKM), pp. 292–299. ACM Press, McLean (2002)

    Google Scholar 

  7. Smith, K., Morse, M., Mork, P., Li, M., Rosenthal, A., Allen, D., Seligman, L.: The role of schema matching in large enterprises. In: CIDR 2009, Fourth Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA (January 2009)

    Google Scholar 

  8. An, Y., Borgida, A., Miller, R., Mylopoulos, J.: A semantic approach to discovering schema mapping expressions. In: Proceedings of the IEEE CS International Conference on Data Engineering, pp. 206–215 (2007)

    Google Scholar 

  9. Do, H., Rahm, E.: COMA - a system for flexible combination of schema matching approaches. In: Proc. 28th Int. Conf. on Very Large Data Bases, pp. 610–621 (2002)

    Google Scholar 

  10. Gal, A.: Uncertain Schema Matching. Synthesis Lectures on Data Management. Morgan & Claypool Publishers (2011)

    Google Scholar 

  11. He, B., Chang, K.C.-C.: Statistical schema matching across Web query interfaces. In: Proc. ACM SIGMOD Int. Conf. on Management of Data, pp. 217–228. ACM Press, San Diego (2003)

    Google Scholar 

  12. Su, W., Wang, J., Lochovsky, F.H.: Holistic schema matching for Web query interfaces. In: Ioannidis, Y., et al. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 77–94. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Madhavan, J., Bernstein, P., Rahm, E.: Generic schema matching with Cupid. In: Proc. 27th Int. Conf. on Very Large Data Bases, Rome, Italy, pp. 49–58 (September 2001)

    Google Scholar 

  14. Gal, A., Modica, G., Jamil, H., Eyal, A.: Automatic ontology matching using application semantics. AI Magazine 26(1), 21–32 (2005)

    Google Scholar 

  15. Berlin, J., Motro, A.: Autoplex: Automated discovery of content for virtual databases. In: Batini, C., Giunchiglia, F., Giorgini, P., Mecella, M. (eds.) CoopIS 2001. LNCS, vol. 2172, pp. 108–122. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  16. Doan, A., Domingos, P., Halevy, A.: Reconciling schemas of disparate data sources: A machine-learning approach. In: Aref, W.G. (ed.) Proc. ACM SIGMOD Int. Conf. on Management of Data, pp. 509–520. ACM Press, Santa Barbara (2001)

    Google Scholar 

  17. Madhavan, J., Bernstein, P., Doan, A., Halevy, A.: Corpus-based schema matching. In: Proc. 21st Int. Conf. on Data Engineering, pp. 57–68. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

  18. Lee, Y., Sayyadian, M., Doan, A., Rosenthal, A.: eTuner: tuning schema matching software using synthetic scenarios. VLDB J. 16(1), 97–122 (2007)

    Article  Google Scholar 

  19. Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press (1972)

    Google Scholar 

  20. MOSEK, The MOSEK Optimization Tools Version 6.0 (revision 61) (2009), http://www.mosek.com

  21. Sheth, A., Larson, J.: Federated database systems for managing distributed, heterogeneous, and autonomous databases. ACM Comput. Surv. 22(3), 183–236 (1990)

    Article  Google Scholar 

  22. Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching. VLDB J. 10(4), 334–350 (2001)

    Article  MATH  Google Scholar 

  23. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. In: Spaccapietra, S. (ed.) Journal on Data Semantics IV. LNCS, vol. 3730, pp. 146–171. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  24. Bellahsene, Z., Bonifati, A., Rahm, E. (eds.): Schema Matching and Mapping. Springer (2011)

    Google Scholar 

  25. Convent, B.: Unsolvable problems related to the view integration approach. In: Atzeni, P., Ausiello, G. (eds.) ICDT 1986. LNCS, vol. 243, pp. 141–156. Springer, Heidelberg (1986)

    Google Scholar 

  26. Hull, R.: Managing semantic heterogeneity in databases: A theoretical perspective. In: Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), pp. 51–61. ACM Press (1997)

    Google Scholar 

  27. He, B., Chang, K.-C.: Making holistic schema matching robust: an ensemble approach. In: Proc. 11th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pp. 429–438 (2005)

    Google Scholar 

  28. Srivastava, B., Koehler, J.: Web service composition - Current solutions and open problems. In: Workshop on Planning for Web Services (ICAPS 2003), Trento, Italy (2003)

    Google Scholar 

  29. Melnik, S., Rahm, E., Bernstein, P.: Rondo: A programming platform for generic model management. In: Proc. ACM SIGMOD Int. Conf. on Management of Data, pp. 193–204. ACM Press, San Diego (2003)

    Google Scholar 

  30. Miller, R., Hernàndez, M., Haas, L., Yan, L.-L., Ho, C., Fagin, R., Popa, L.: The Clio project: Managing heterogeneity. SIGMOD Record 30(1), 78–83 (2001)

    Article  Google Scholar 

  31. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Learning to map between ontologies on the semantic web. In: Proc. 11th Int. World Wide Web Conf., pp. 662–673. ACM Press (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gal, A. et al. (2013). Completeness and Ambiguity of Schema Cover. In: Meersman, R., et al. On the Move to Meaningful Internet Systems: OTM 2013 Conferences. OTM 2013. Lecture Notes in Computer Science, vol 8185. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41030-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41030-7_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41029-1

  • Online ISBN: 978-3-642-41030-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics