Abstract
An integrated dataset originating from multi-modal datasets can be used to target underlying causal biological actions that through a systems level process trigger the development of a disease. In this study, we use an integrated dataset related to cutaneous melanoma that comes from two separate sets (microarray and imaging) and the application of data imputation methods. Our goal is to associate low-level biological information, i.e. gene expression, to imaging features, that characterize disease at a macroscopic level. Using an average Spearman correlation measurement of a gene to a total of 31 imaging features, a set of 1701 genes were sorted based on their impact to imaging features. Top correlated genes, comprising a candidate set of gene biomarkers, were used to train an artificial feed forward neural network. Classification performance metrics reported here showed the proof of concept for our gene selection methodology which is to be further validated.
Chapter PDF
Similar content being viewed by others
References
Martin, C., grosse Deters, H., Nattkemper, T.W.: Fusing Biomedical Multi-modal Data for Exploratory Data Analysis. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4132, pp. 798–807. Springer, Heidelberg (2006)
Viceconti, M., Clapworthy, G., Testi, D., Taddei, F., McFarlane, N.: Multimodal fusion of biomedical data at different temporal and dimensional scales. Comp. Mtds. and Progs. Biomed. 102(3), 227–237 (2010)
Moutselos, K., Chatziioannou, A., Maglogiannis, I.: Feature Selection Study on Separate Multi-modal Datasets: Application on Cutaneous Melanoma. AIAI (2), 36–45 (2012)
Fenner, J.W., Brook, B., Clapworthy, G., Coveney, P.V., Feipel, V., Gregersen, H., Hose, D.R., Kohl, P., Lawford, P., McCormack, K.M., Pinney, D., Thomas, S.R., Van Sint Jan, S., Waters, S., Viceconti, M.: The EuroPhysiome, STEP and a roadmap for the virtual physiological human. Philos. Transact. A Math. Phys. Eng. Sci. 366, 2979–2999 (2008)
STEP Consortium. Seeding the EuroPhysiome: A Roadmap to the Virtual Physiological Human (July 5, 2007), http://www.europhysiome.org/roadmap
Balázs, M., Ecsedi, S., VÃzkeleti, L., et al.: Genomics of Human Malignant Melanoma. In: Tanaka, Y. (ed.) Breakthroughs in Melanoma Research. InTech (2011)
Ogorzałek, M., Nowak, L., Surowka, G., et al.: Modern Techniques for Computer-Aided Melanoma Diagnosis. In: Murph, M. (ed.) Melanoma in the Clinic - Diagnosis, Management and Complications of Malignancy. InTech (2011)
Barrett, T., Troup, D.B, Wilhite, S.E., et al.: NCBI GEO: archive for functional genomics data sets - 10 years on. Nucleic Acids Res. 39(Database issue), D1005–D1010 (2011); Chevalier, R.L.: Obstructive nephropathy: towards biomarker discovery and gene therapy. Nat. Clin. Pract. Nephrol. 2(3), 157–168 (2006)
Maragoudakis, M., Maglogiannis, I.: Skin lesion diagnosis from images using novel ensemble classification techniques. In: 10th IEEE EMBS International Conference on Information Technology Applications in Biomedicine, Corfu, Greece (2010)
Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: YALE: Rapid Prototyping for Complex Data Mining Tasks. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD-2006 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 IFIP International Federation for Information Processing
About this paper
Cite this paper
Valavanis, I., Moutselos, K., Maglogiannis, I., Chatziioannou, A. (2013). Gene Prioritization for Inference of Robust Composite Diagnostic Signatures in the Case of Melanoma. In: Papadopoulos, H., Andreou, A.S., Iliadis, L., Maglogiannis, I. (eds) Artificial Intelligence Applications and Innovations. AIAI 2013. IFIP Advances in Information and Communication Technology, vol 412. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41142-7_32
Download citation
DOI: https://doi.org/10.1007/978-3-642-41142-7_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41141-0
Online ISBN: 978-3-642-41142-7
eBook Packages: Computer ScienceComputer Science (R0)