Abstract
Security-oriented analyses of information flow can be in terms of channels (entropy leakage), or in terms of programs (noninterference); and for each we can consider deterministic, demonic or probabilistic instances. We discuss all 2×3 = 6 cases from a common point of view, seeking a uniform approach to a partial order of information. In some cases this is a lattice (as is already known); and in some cases it seems not to be (novel).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alvim, M., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring information leakage using generalized gain functions. In: Proc. 25th IEEE CSF, pp. 265–279 (2012)
Goguen, J., Meseguer, J.: Unwinding and inference control. In: Proc. IEEE Symp. on Security and Privacy, pp. 75–86. IEEE Computer Society (1984)
Köpf, B., Basin, D.: An information-theoretic model for adaptive side-channel attacks. In: Proceedings of the 14th ACM Conference on Computer and Communications Security, CCS 2007, pp. 286–296. ACM, New York (2007), http://doi.acm.org/10.1145/1315245.1315282
Landauer, J., Redmond, T.: A lattice of information. In: Gray, J.W. (ed.) Proc. CSFW 1993. IEEE Computer Society Press (1993)
Malacaria, P.: Algebraic foundations for information theoretical, probabilistic and guessability measures of information flow. CoRR, vol. abs/1101.3453 (2011)
McIver, A., Meinicke, L., Morgan, C.: Compositional closure for Bayes Risk in probabilistic noninterference. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 223–235. Springer, Heidelberg (2010), Full version available at [7]
McIver, A., Meinicke, L., Morgan, C.: Compositional closure for Bayes Risk in probabilistic noninterference (2011), http://arxiv.org/pdf/1007.1054v1.pdf , extended version of [6]
Morgan, C.: The Shadow Knows: Refinement of Ignorance in sequential programs. In: Uustalu, T. (ed.) MPC 2006. LNCS, vol. 4014, pp. 359–378. Springer, Heidelberg (2006)
Shannon, C.: A mathematical theory of communication. Bell System Technical Journal 27, 379–423, 623–656 (1948)
Yasuoka, H., Terauchi, T.: Quantitative information flow — verification hardness and possibilities. In: Proc. 23rd IEEE CSF Symp., pp. 15–27 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Morgan, C.C. (2013). Lattices of Information for Security: Deterministic, Demonic, Probabilistic. In: Groves, L., Sun, J. (eds) Formal Methods and Software Engineering. ICFEM 2013. Lecture Notes in Computer Science, vol 8144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41202-8_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-41202-8_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41201-1
Online ISBN: 978-3-642-41202-8
eBook Packages: Computer ScienceComputer Science (R0)