Abstract
Program invariants play a major role in program analysis, the specification refinement technique has the capability to generating all the required program invariants for verifying a specification. The refinement invariants generation is the main obstacles of the specification refinement. Based on random testing, this paper presents a practical assistant approach for specification refinement. The effectiveness of the approach is demonstrated on examples.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: Aho, A.V., Zilles, S.N., Szymanski, T.G. (eds.) POPL 1978, pp. 84–96. ACM Press, Tucson (1978)
Mine, A.: The octagon abstract domain. Higher-Order and Symbolic Computation 19(1), 31–100 (2006)
Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using non-linear constraint solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003)
Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving. In: Gupta, R., Amarasinghe, S.P. (eds.) PLDI 2008, pp. 281–292. ACM Press, Tucson (2008)
Sankaranaryanan, S., Sipma, H.B., Manna, Z.: Non-Linear Loop Invariant Generation using Gröbner Bases. In: Jones, N.D., Leroy, X. (eds.) POPL 2004, pp. 318–329. ACM Press, Tucson (2004)
Chen, Y., Xia, B., Yang, L., Zhan, N.: Generating polynomial invariants with DISCOVERER and QEPCAD. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) Formal Methods and Hybrid Real-Time Systems. LNCS, vol. 4700, pp. 67–82. Springer, Heidelberg (2007)
Rodriguez-Carbonell, E., Kapur, D.: Generating All Polynomial Invariants in Simple Loops. J. of Symbolic Computation 42(4), 443–476 (2007)
Kovács, L.: Automated Invariant Generation by Algebraic Techniques for Imperative Program Verification in Theorema. PhD thesis, RISC, Johannes Kepler University Linz (2007)
Kovács, L.: Aligator: A Mathematica Package for Invariant Generation (System Description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 275–282. Springer, Heidelberg (2008)
Müller-Olm, M., Seidl, H.: Precise interprocedural analysis through linear algebra. In: Jones, N.D., Leroy, X. (eds.) POPL 2004, pp. 330–341. ACM Press, Tucson (2004)
Müller-Olm, M., Seidl, H.: Computing polynomial program invariants. Inf. Process. Lett. 91(5), 233–244 (2004)
Müller-Olm, M., Petter, M., Seidl, H.: Interprocedurally Analyzing Polynomial Identities. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 50–67. Springer, Heidelberg (2006)
Furia, C.A., Meyer, B.: Inferring Loop Invariants Using Postconditions. In: Blass, A., Dershowitz, N., Reisig, W. (eds.) Fields of Logic and Computation. LNCS, vol. 6300, pp. 277–300. Springer, Heidelberg (2010)
Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering likely program invariants to support program evolution. IEEE Transactions of Software Engineering 27(2), 99–123 (2001)
Perkings, J.H., Ernst, M.D.: Efficient incremental algorithms for dynamic detection of likely invariants. In: Taylor, R.N., Dwyer, M.B. (eds.) SIGSOFT FSE 2004, pp. 23–32. ACM Press, Tucson (2004)
Damchoom, K., Butler, M., Abrial, J.-R.: Modelling and proof of a tree-structured file system in Event-B and Rodin. In: Liu, S., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 25–44. Springer, Heidelberg (2008)
Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge University Press (2010)
Abrial, J.-R., Hallerstede, S.: Refinement, Decomposition, and Instantiation of Discrete Models: Application to Event-B. Fundam. Inform. 77(1-2), 1–28 (2007)
Abrial, J.-R., Butler, M.J., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin: an open toolset for modelling and reasoning in Event-B. STTT 12(6), 447–466 (2010)
Llano, M.T., Ireland, A., Pease, A.: Discovery of Invariants through Automated Theory Formation. In: Derrick, J., Boiten, E.A., Reeves, S. (eds.) Refine 2011. EPTCS, vol. 55, pp. 1–19 (2011)
Nguyen, T., Kapur, D., Weimer, W., Forrest, S.: Using dynamic analysis to discover polynomial and array invariants. In: Glinz, M., Murphy, G.C., Pezzè, M. (eds.) ICSE 2012, pp. 683–693. IEEE Computer Society Press, Los Alamitos (2012)
Li, M.: A Practical Loop Invariant Generation Approach Based on Random Testing, Constraint Solving and Verification. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 447–461. Springer, Heidelberg (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, M. (2013). Assisting Specification Refinement by Random Testing. In: Groves, L., Sun, J. (eds) Formal Methods and Software Engineering. ICFEM 2013. Lecture Notes in Computer Science, vol 8144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41202-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-41202-8_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41201-1
Online ISBN: 978-3-642-41202-8
eBook Packages: Computer ScienceComputer Science (R0)