Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Assisting Specification Refinement by Random Testing

  • Conference paper
Formal Methods and Software Engineering (ICFEM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8144))

Included in the following conference series:

  • 1713 Accesses

Abstract

Program invariants play a major role in program analysis, the specification refinement technique has the capability to generating all the required program invariants for verifying a specification. The refinement invariants generation is the main obstacles of the specification refinement. Based on random testing, this paper presents a practical assistant approach for specification refinement. The effectiveness of the approach is demonstrated on examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: Aho, A.V., Zilles, S.N., Szymanski, T.G. (eds.) POPL 1978, pp. 84–96. ACM Press, Tucson (1978)

    Google Scholar 

  2. Mine, A.: The octagon abstract domain. Higher-Order and Symbolic Computation 19(1), 31–100 (2006)

    Article  MATH  Google Scholar 

  3. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using non-linear constraint solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving. In: Gupta, R., Amarasinghe, S.P. (eds.) PLDI 2008, pp. 281–292. ACM Press, Tucson (2008)

    Google Scholar 

  5. Sankaranaryanan, S., Sipma, H.B., Manna, Z.: Non-Linear Loop Invariant Generation using Gröbner Bases. In: Jones, N.D., Leroy, X. (eds.) POPL 2004, pp. 318–329. ACM Press, Tucson (2004)

    Google Scholar 

  6. Chen, Y., Xia, B., Yang, L., Zhan, N.: Generating polynomial invariants with DISCOVERER and QEPCAD. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) Formal Methods and Hybrid Real-Time Systems. LNCS, vol. 4700, pp. 67–82. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Rodriguez-Carbonell, E., Kapur, D.: Generating All Polynomial Invariants in Simple Loops. J. of Symbolic Computation 42(4), 443–476 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kovács, L.: Automated Invariant Generation by Algebraic Techniques for Imperative Program Verification in Theorema. PhD thesis, RISC, Johannes Kepler University Linz (2007)

    Google Scholar 

  9. Kovács, L.: Aligator: A Mathematica Package for Invariant Generation (System Description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 275–282. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Müller-Olm, M., Seidl, H.: Precise interprocedural analysis through linear algebra. In: Jones, N.D., Leroy, X. (eds.) POPL 2004, pp. 330–341. ACM Press, Tucson (2004)

    Google Scholar 

  11. Müller-Olm, M., Seidl, H.: Computing polynomial program invariants. Inf. Process. Lett. 91(5), 233–244 (2004)

    Article  MATH  Google Scholar 

  12. Müller-Olm, M., Petter, M., Seidl, H.: Interprocedurally Analyzing Polynomial Identities. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 50–67. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Furia, C.A., Meyer, B.: Inferring Loop Invariants Using Postconditions. In: Blass, A., Dershowitz, N., Reisig, W. (eds.) Fields of Logic and Computation. LNCS, vol. 6300, pp. 277–300. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering likely program invariants to support program evolution. IEEE Transactions of Software Engineering 27(2), 99–123 (2001)

    Article  Google Scholar 

  15. Perkings, J.H., Ernst, M.D.: Efficient incremental algorithms for dynamic detection of likely invariants. In: Taylor, R.N., Dwyer, M.B. (eds.) SIGSOFT FSE 2004, pp. 23–32. ACM Press, Tucson (2004)

    Google Scholar 

  16. Damchoom, K., Butler, M., Abrial, J.-R.: Modelling and proof of a tree-structured file system in Event-B and Rodin. In: Liu, S., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 25–44. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge University Press (2010)

    Google Scholar 

  18. Abrial, J.-R., Hallerstede, S.: Refinement, Decomposition, and Instantiation of Discrete Models: Application to Event-B. Fundam. Inform. 77(1-2), 1–28 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Abrial, J.-R., Butler, M.J., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin: an open toolset for modelling and reasoning in Event-B. STTT 12(6), 447–466 (2010)

    Article  Google Scholar 

  20. Llano, M.T., Ireland, A., Pease, A.: Discovery of Invariants through Automated Theory Formation. In: Derrick, J., Boiten, E.A., Reeves, S. (eds.) Refine 2011. EPTCS, vol. 55, pp. 1–19 (2011)

    Google Scholar 

  21. Nguyen, T., Kapur, D., Weimer, W., Forrest, S.: Using dynamic analysis to discover polynomial and array invariants. In: Glinz, M., Murphy, G.C., Pezzè, M. (eds.) ICSE 2012, pp. 683–693. IEEE Computer Society Press, Los Alamitos (2012)

    Google Scholar 

  22. Li, M.: A Practical Loop Invariant Generation Approach Based on Random Testing, Constraint Solving and Verification. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 447–461. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, M. (2013). Assisting Specification Refinement by Random Testing. In: Groves, L., Sun, J. (eds) Formal Methods and Software Engineering. ICFEM 2013. Lecture Notes in Computer Science, vol 8144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41202-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41202-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41201-1

  • Online ISBN: 978-3-642-41202-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics