Abstract
In this paper we propose a combination of capabilities of the FPGA based device and PC computer for data processing using rough set methods. Presented architecture has been tested on a random data. Obtained results confirm the significant acceleration of the computation time using hardware supporting rough sets operations in comparison to software implementation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Athanas, P., Pnevmatikatos, D., Sklavos, N. (eds.): Embedded Systems Design with FPGAs. Springer (2013)
Kanasugi, A., Yokoyama, A.: A basic design for rough set processor. In: The 15th Annual Conference of Japanese Society for Artificial Intelligence (2001)
Kopczyński, M., Stepaniuk, J.: Rough set methods and hardware implementations, Zeszyty Naukowe Politechniki Białostockiej. Informatyka Zeszyt 8, 5–18 (2011)
Kopczyński, M., Stepaniuk, J.: Hardware Implementations of Rough Set Methods in Programmable Logic Devices. In: Skowron, A., Suraj, Z. (eds.) Rough Sets and Intelligent Systems. ISRL, vol. 43, pp. 309–321. Springer, Heidelberg (2013)
Lewis, T., Perkowski, M., Jozwiak, L.: Learning in Hardware: Architecture and Implementation of an FPGA-Based Rough Set Machine. In: 25th Euromicro Conference (EUROMICRO 1999), vol. 1, p. 1326 (1999)
Muraszkiewicz, M., Rybiński, H.: Towards a Parallel Rough Sets Computer. In: Rough Sets, Fuzzy Sets and Knowledge Discovery, pp. 434–443. Springer (1994)
Pawlak, Z.: Elementary rough set granules: Toward a rough set processor. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neurocomputing: Techniques for Computing with Words, Cognitive Technologies, pp. 5–14. Springer, Berlin (2004)
Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177(1), 3–27 (2007)
Stepaniuk, J.: Rough–Granular Computing in Knowledge Discovery and Data Mining. Springer (2008)
Tiwari, K.S., Kothari, A.G., Keskar, A.G.: Reduct Generation from Binary Discernibility Matrix: An Hardware Approach. International Journal of Future Computer and Communication 1(3), 270–272 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Grześ, T., Kopczyński, M., Stepaniuk, J. (2013). FPGA in Rough Set Based Core and Reduct Computation. In: Lingras, P., Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P. (eds) Rough Sets and Knowledge Technology. RSKT 2013. Lecture Notes in Computer Science(), vol 8171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41299-8_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-41299-8_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41298-1
Online ISBN: 978-3-642-41299-8
eBook Packages: Computer ScienceComputer Science (R0)