Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Learning Models of Activities Involving Interacting Objects

  • Conference paper
Advances in Intelligent Data Analysis XII (IDA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8207))

Included in the following conference series:

  • 2476 Accesses

Abstract

We propose the LEMAIO multi-layer framework, which makes use of hierarchical abstraction to learn models for activities involving multiple interacting objects from time sequences of data concerning the individual objects. Experiments in the sea navigation domain yielded learned models that were then successfully applied to activity recognition, activity simulation and multi-target tracking. Our method compares favourably with respect to previously reported results using Hidden Markov Models and Relational Particle Filtering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bobick, A.F.: Movement, activity and action: the role of knowledge in the perception of motion. Phil. Trans. Lond. B 352, 1257–1265 (1997)

    Article  Google Scholar 

  2. Bobick, A.F., Davis, J.W.: The recognition of human movement using temporal templates. IEEE Trans. Pattern Anal. Mach. Intell. 23(3), 257–267 (2001)

    Article  Google Scholar 

  3. Borg, M., Thirde, D., Ferryman, J.M., Fusier, F., Valentin, V., Brémond, F., Thonnat, M.: Video surveillance for aircraft activity monitoring. In: AVSS, pp. 16–21 (2005)

    Google Scholar 

  4. CAIAC: The CAIAC intelligent systems challenge (2009), http://www.intelligent-systems-challenge.ca/challenge2009/problemDescriptionAndDataset/index.html

  5. Cattelani, L., Manfredotti, C.E., Messina, E.: Multiple object tracking with relations. In: ICPRAM (1), pp.459–466 (2012)

    Google Scholar 

  6. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. B 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  7. Fraley, C., Raftery, A.E.: How many clusters? Which clustering method? Answers via model-based cluster analysis. The Computer Journal 41(8), 578–588 (1998)

    Article  MATH  Google Scholar 

  8. Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational models. IJCAI, 1300–1309 (1999)

    Google Scholar 

  9. Galata, A., Cohn, A.G., Magee, D.R., Hogg, D.: Modeling interaction using learnt qualitative spatio-temporal relations and variable length Markov models. In: ECAI, pp. 741–745 (2002)

    Google Scholar 

  10. Geisser, S.: Predictive Inference. Taylor & Francis (1993)

    Google Scholar 

  11. Gning, A., Mihaylova, L., Maskell, S., Pang, S., Godsill, S.: Group object structure and state estimation with evolving networks and Monte Carlo methods. IEEE Trans. Signal Processing 59(4), 1383–1396 (2011)

    Article  Google Scholar 

  12. Hernandez-Leal, P., Gonzalez, J.A., Morales, E.F., Sucar, L.E.: Learning temporal nodes bayesian networks. Int. J. Approx. Reasoning 54(8), 956–977 (2013)

    Article  Google Scholar 

  13. Ivanov, Y.A., Bobick, A.F.: Recognition of visual activities and interactions by stochastic parsing. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 852–872 (2000)

    Article  Google Scholar 

  14. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley (1990)

    Google Scholar 

  15. Lee, K., Kim, T.K., Demiris, Y.: Learning action symbols for hierarchical grammar induction. In: ICPR, pp. 3778-3782 (2012)

    Google Scholar 

  16. Li, K., Hu, J., Fu, Y.: Modeling complex temporal composition of actionlets for activity prediction. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part I. LNCS, vol. 7572, pp. 286–299. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Manfredotti, C.E., Fleet, D.J., Hamilton, H.J., Zilles, S.: Simultaneous tracking and activity recognition. In: ICTAI, pp. 189–196 (2011)

    Google Scholar 

  18. Nguyen, N.T., Phung, D.Q., Venkatesh, S., Bui, H.H.: Learning and detecting activities from movement trajectories using the hierarchical hidden Markov models. In: CVPR, pp. 955–960 (2005)

    Google Scholar 

  19. Niebles, J.C., Wang, H., Fei-Fei, L.: Unsupervised learning of human action categories using spatial-temporal words. Int. J. Comput. Vision 79(3), 299–318 (2008)

    Article  Google Scholar 

  20. Oh, S.M., Rehg, J.M., Balch, T.R., Dellaert, F.: Data-driven MCMC for learning and inference in switching linear dynamic systems. In: AAAI, pp. 944–949 (2005)

    Google Scholar 

  21. Ryoo, M.S., Aggarwal, J.K.: Stochastic representation and recognition of high-level group activities. Int. J. Comput. Vision 93(2), 183–200 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ryoo, M.S., Aggarwal, J.K.: Semantic representation and recognition of continued and recursive human activities. Int. J. Comput. Vision 82(1), 1–24 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Manfredotti, C., Pedersen, K.S., Hamilton, H.J., Zilles, S. (2013). Learning Models of Activities Involving Interacting Objects. In: Tucker, A., Höppner, F., Siebes, A., Swift, S. (eds) Advances in Intelligent Data Analysis XII. IDA 2013. Lecture Notes in Computer Science, vol 8207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41398-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41398-8_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41397-1

  • Online ISBN: 978-3-642-41398-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics