Abstract
We propose the LEMAIO multi-layer framework, which makes use of hierarchical abstraction to learn models for activities involving multiple interacting objects from time sequences of data concerning the individual objects. Experiments in the sea navigation domain yielded learned models that were then successfully applied to activity recognition, activity simulation and multi-target tracking. Our method compares favourably with respect to previously reported results using Hidden Markov Models and Relational Particle Filtering.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bobick, A.F.: Movement, activity and action: the role of knowledge in the perception of motion. Phil. Trans. Lond. B 352, 1257–1265 (1997)
Bobick, A.F., Davis, J.W.: The recognition of human movement using temporal templates. IEEE Trans. Pattern Anal. Mach. Intell. 23(3), 257–267 (2001)
Borg, M., Thirde, D., Ferryman, J.M., Fusier, F., Valentin, V., Brémond, F., Thonnat, M.: Video surveillance for aircraft activity monitoring. In: AVSS, pp. 16–21 (2005)
CAIAC: The CAIAC intelligent systems challenge (2009), http://www.intelligent-systems-challenge.ca/challenge2009/problemDescriptionAndDataset/index.html
Cattelani, L., Manfredotti, C.E., Messina, E.: Multiple object tracking with relations. In: ICPRAM (1), pp.459–466 (2012)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. B 39(1), 1–38 (1977)
Fraley, C., Raftery, A.E.: How many clusters? Which clustering method? Answers via model-based cluster analysis. The Computer Journal 41(8), 578–588 (1998)
Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational models. IJCAI, 1300–1309 (1999)
Galata, A., Cohn, A.G., Magee, D.R., Hogg, D.: Modeling interaction using learnt qualitative spatio-temporal relations and variable length Markov models. In: ECAI, pp. 741–745 (2002)
Geisser, S.: Predictive Inference. Taylor & Francis (1993)
Gning, A., Mihaylova, L., Maskell, S., Pang, S., Godsill, S.: Group object structure and state estimation with evolving networks and Monte Carlo methods. IEEE Trans. Signal Processing 59(4), 1383–1396 (2011)
Hernandez-Leal, P., Gonzalez, J.A., Morales, E.F., Sucar, L.E.: Learning temporal nodes bayesian networks. Int. J. Approx. Reasoning 54(8), 956–977 (2013)
Ivanov, Y.A., Bobick, A.F.: Recognition of visual activities and interactions by stochastic parsing. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 852–872 (2000)
Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley (1990)
Lee, K., Kim, T.K., Demiris, Y.: Learning action symbols for hierarchical grammar induction. In: ICPR, pp. 3778-3782 (2012)
Li, K., Hu, J., Fu, Y.: Modeling complex temporal composition of actionlets for activity prediction. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part I. LNCS, vol. 7572, pp. 286–299. Springer, Heidelberg (2012)
Manfredotti, C.E., Fleet, D.J., Hamilton, H.J., Zilles, S.: Simultaneous tracking and activity recognition. In: ICTAI, pp. 189–196 (2011)
Nguyen, N.T., Phung, D.Q., Venkatesh, S., Bui, H.H.: Learning and detecting activities from movement trajectories using the hierarchical hidden Markov models. In: CVPR, pp. 955–960 (2005)
Niebles, J.C., Wang, H., Fei-Fei, L.: Unsupervised learning of human action categories using spatial-temporal words. Int. J. Comput. Vision 79(3), 299–318 (2008)
Oh, S.M., Rehg, J.M., Balch, T.R., Dellaert, F.: Data-driven MCMC for learning and inference in switching linear dynamic systems. In: AAAI, pp. 944–949 (2005)
Ryoo, M.S., Aggarwal, J.K.: Stochastic representation and recognition of high-level group activities. Int. J. Comput. Vision 93(2), 183–200 (2011)
Ryoo, M.S., Aggarwal, J.K.: Semantic representation and recognition of continued and recursive human activities. Int. J. Comput. Vision 82(1), 1–24 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Manfredotti, C., Pedersen, K.S., Hamilton, H.J., Zilles, S. (2013). Learning Models of Activities Involving Interacting Objects. In: Tucker, A., Höppner, F., Siebes, A., Swift, S. (eds) Advances in Intelligent Data Analysis XII. IDA 2013. Lecture Notes in Computer Science, vol 8207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41398-8_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-41398-8_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41397-1
Online ISBN: 978-3-642-41398-8
eBook Packages: Computer ScienceComputer Science (R0)