Abstract
Microaggregation is a cardinality-constrained clustering problem that arose in the context of data privacy. In microaggregation, the number of clusters is not fixed beforehand, but each cluster must have at least k elements. We illustrate in this paper that microaggregation can be applied for decision making in areas other than privacy. Specifically, we focus on the service facility location problem and on game theory (coalition formation and social choice).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arrow, K.J.: Social Choice and Individual Values. Yale University Press, New Haven CT (1951)
Domingo-Ferrer, J., Mateo-Sanz, J.M.: Practical data-oriented microaggregation for statistical disclosure control. IEEE Transactions on Knowledge and Data Engineering 14(1), 189–201 (2002)
Domingo-Ferrer, J., Sebé, F., Solanas, A.: A polynomial-time approximation to optimal multivariate microaggregation. Computers & Mathematics with Applications 55(4), 714–732 (2008)
Domingo-Ferrer, J., Torra, V.: Ordinal, continuous and heterogeneous k-anonymity through microaggregation. Data Mining and Knowledge Discovery 11(2), 195–212 (2005)
Domingo-Ferrer, J.: Marginality: A numerical mapping for enhanced exploitation of taxonomic attributes. In: Torra, V., Narukawa, Y., López, B., Villaret, M. (eds.) MDAI 2012. LNCS, vol. 7647, pp. 367–381. Springer, Heidelberg (2012)
Domingo-Ferrer, J., Sánchez, D., Rufian-Torrell, G.: Anonymization of nominal data based on semantic marginality. Information Sciences 242, 35–48 (2013)
Hansen, S.L., Mukherjee, S.: A polynomial algorithm for optimal univariate microaggregation. IEEE Transactions on Knowledge and Data Engineering 15(2), 1043–1044 (2003)
Hundepool, A., Domingo-Ferrer, J., Franconi, L., Giessing, S., Schulte Nordholt, E., Spicer, K., De Wolf, P.P.: Statistical Disclosure Control. Wiley, New York (2012)
Khumawala, B.M.: An efficient branch and bound algorithm for the warehouse location problem. Management Science 18(12), B-718–B-731 (1972)
Krarup, J., Pruzan, P.M.: The simple plant location problem: survey and synthesis. European Journal of Operational Research 12(1), 36–81 (1983)
Laszlo, M., Mukherjee, S.: Approximation bounds for minimum information loss microaggregation. IEEE Transactions on Knowledge and Data Engineering 21(11), 1643–1647 (2009)
Nakamura, K.: The vetoers in a simple game with ordinal preferences. International Journal of Game Theory 8(1), 55–61 (1979)
Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V.V. (eds.): Algorithmic Game Theory. Cambridge University Press, New York (2007)
Oganian, A., Domingo-Ferrer, J.: On the complexity of optimal microaggregation for statistical disclosure control. Statistical Journal of the United Nations Economic Commission for Europe 18(4), 345–354 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Domingo-Ferrer, J. (2013). Facility Location and Social Choice via Microaggregation. In: Torra, V., Narukawa, Y., Navarro-Arribas, G., MegÃas, D. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2013. Lecture Notes in Computer Science(), vol 8234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41550-0_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-41550-0_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41549-4
Online ISBN: 978-3-642-41550-0
eBook Packages: Computer ScienceComputer Science (R0)