Abstract
The notion of homogeneous logical proportions has been recently introduced in close relation with the idea of analogical proportion. The four homogeneous proportions have intuitive meanings, which can be related with classification tasks. In this paper, we proposed a supervised classification algorithm using homogeneous logical proportions and provide results for all. A final comparison with previous works using similar methodologies and with other classifiers is provided.
Chapter PDF
Similar content being viewed by others
References
Bache, K., Lichman, M.: UCI machine learning repository, http://archive.ics.uci.edu/ml (2013)
Bayoudh, S., Miclet, L., Delhay, A.: Learning by analogy: A classification rule for binary and nominal data. In: Proc. Inter. Conf. on Artificial Intelligence, IJCAI 2007, pp. 678–683 (2007)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience (2001)
Hall, M., et al.: The Weka data mining software: An update. SIGKDD Explorations 11, 10–18 (2009)
Hüllermeier, E.: Case-Based Approximate Reasoning. Theory and Decision Library. Springer, New York (2007)
Miclet, L., Delhay, A.: Analogical Dissimilarity: definition, algorithms and first experiments in machine learning. Technical Report 5694, IRISA (September 2005)
Miclet, L., Bayoudh, S., Delhay, A.: Analogical dissimilarity: definition, algorithms and two experiments in machine learning. JAIR 32, 793–824 (2008)
Miclet, L., Prade, H.: Handling analogical proportions in classical logic and fuzzy logics settings. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS, vol. 5590, pp. 638–650. Springer, Heidelberg (2009)
Moraes, R.M., Machado, L.S., Prade, H., Richard, G.: Classification based on homogeneous logical proportions. Proc. 33th Int. Conf. on Artificial Intelligence (AI 2013), Cambridge (to appear, 2013)
Prade, H., Richard, G.: Analogy, paralogy and reverse analogy: Postulates and inferences. In: Mertsching, B., Hund, M., Aziz, Z. (eds.) KI 2009. LNCS, vol. 5803, pp. 306–314. Springer, Heidelberg (2009)
Prade, H., Richard, G.: Analogical proportions: another logical view. In: Proc. 29th Int. Conf. Artif. Intellig (AI 2009), Cambridge, pp. 121–134. Springer (2009)
Prade, H., Richard, G.: Multiple-valued logic interpretations of analogical, reverse analogical, and paralogical proportions. In: Proc. 40th IEEE International Symp. on Multiple-Valued Logic (ISMVL 2010), Barcelona, pp. 258–263 (2010)
Prade, H., Richard, G., Yao, B.: Enforcing regularity by means of analogy-related proportions - A new approach to classification. Int. Jour. Computer Information Systems and Industrial Management Applications 4, 648–658 (2012)
Prade, H., Richard, G.: Homogeneous Logical Proportions: Their Uniqueness and Their Role in Similarity-Based Prediction. In: Proc. XIII International Conference on Principles of Knowledge Representation and Reasoning, pp. 402–412 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Moraes, R.M., Machado, L.S., Prade, H., Richard, G. (2013). Supervised Classification Using Homogeneous Logical Proportions for Binary and Nominal Features. In: Ruiz-Shulcloper, J., Sanniti di Baja, G. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2013. Lecture Notes in Computer Science, vol 8258. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41822-8_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-41822-8_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41821-1
Online ISBN: 978-3-642-41822-8
eBook Packages: Computer ScienceComputer Science (R0)