Abstract
Precise segmentation of bone cancer is an important step for several applications. However, the achievement of this task has proven problematic due to lack of contrast and the non homogeneous intensities in many modalities such as MRI and CT-scans. In this paper we investigate this line of research by introducing a new method for segmenting bone cancer. Our segmentation process involves different steps: a registration step of different image modalities, a fuzzy-possibilistic classification (FPCM) step and a final segmentation step based on a variational model. The registration and the FPCM algorithms are used to locate and to initialize accurately the deformable model that will evolve smoothly to delineate the expected tumor boundaries. Preliminary results show accurate and promising detection of the cancer region.
Chapter PDF
Similar content being viewed by others
References
Fitton, I., et al.: Semi-automatic delineation using weighted ct-mri registered images for radiotherapy of nasopharyngeal cancer. The International Journal of Medical Physics Research and Practice 38, 4662–4666 (2011)
Bourouis, S., Hamrouni, K.: 3d segmentation of mri brain using level set and unsupervised classification. International Journal in Image and Graphics (IJIG) 10(1), 135–154 (2010)
Seim, H., et al.: Automatic segmentation of the pelvic bones from ct data based on a statistical shape model. In: Eurographics Workshop on Visual Computing for Biomedicine, pp. 224–230 (2008)
Vincent, G., Wolstenholme, C., Scott, I., Bowes, M.: Fully automatic segmentation of the knee joint using active appearance models. In: Proc. Medical Image Analysis for the Clinic (2010)
Jrme Schmid, N.M.T.: Fully automatic segmentation of the knee joint using active appearance models. Med. Image Comput. Comput. Assist. Interv. 11, 119–126 (2008)
Frangi, A., et al.: Bone tumor segmentation from mr perfusion images with neural networks using multi-scale pharmacokinetic features. In: Image and Vision Computing, pp. 679–690 (2001)
Myronenko, A., Song, X.: Intensity-based image registration by minimizing residual complexity. IEEE Trans. on Medical Imaging 29, 1882–1891 (2010)
Myronenko, A., Song, X., Carreira-perpinán, M.A.: Free-form nonrigid image registration using generalized elastic nets. In: IEEE Conf. of Computer Vision and Pattern Recognition, pp. 1–8 (2007)
Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)
Krishnapuram, R., Keller, J.: A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 1(2), 98–110 (1993)
Pal, N.R., Pal, S.K., Keller, J.M., Bezdek, J.C.: A possibilistic fuzzy c-means clustering algorithm. IEEE Transactions on Fuzzy Systems 13(4), 517–530 (2005)
Bourouis, S., Hamrouni, K.: Fully automatic brain tumor segmentation based on multi-modality mri and level-set. Journal of Ubiquitous Systems and Pervasive Networks 3(2), 47–54 (2011)
Sethian, J.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Materials Science, 2nd edn. Cambridge University Press (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bourouis, S., Chennoufi, I., Hamrouni, K. (2013). Multimodal Bone Cancer Detection Using Fuzzy Classification and Variational Model. In: Ruiz-Shulcloper, J., Sanniti di Baja, G. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2013. Lecture Notes in Computer Science, vol 8258. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41822-8_22
Download citation
DOI: https://doi.org/10.1007/978-3-642-41822-8_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41821-1
Online ISBN: 978-3-642-41822-8
eBook Packages: Computer ScienceComputer Science (R0)