Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Big Data—Conceptual Modeling to the Rescue

  • Conference paper
Conceptual Modeling (ER 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8217))

Included in the following conference series:

  • 2319 Accesses

Abstract

Big data is characterized by volume, variety, velocity, and veracity. We should expect conceptual modeling to provide some answers since its historical perspective has always been about structuring information—making its volume searchable, harnessing its variety uniformly, mitigating its velocity with automation, and checking its veracity with application constraints. We provide perspectives about how conceptual modeling can “come to the rescue” for many big-data applications by handling volume and velocity with automation, by inter-conceptual-model transformations for mitigating variety, and by conceptualized constraint checking for increasing veracity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zikopoulos, P.C., Eaton, C., de Roos, D., Deutsch, T., Lapis, G.: Understanding Big Data. McGraw-Hill, Inc., New York (2011)

    Google Scholar 

  2. Embley, D.W., Campbell, D.M., Jiang, Y.S., Liddle, S.W., Lonsdale, D.W., Ng, Y.-K., Smith, R.D.: Conceptual-model-based data extraction from multiple-record web pages. Data & Knowledge Engineering 31(3), 227–251 (1999)

    Article  MATH  Google Scholar 

  3. Embley, D.W., Liddle, S.W., Lonsdale, D.W., Tijerino, Y.: Multilingual ontologies for cross-language information extraction and semantic search. In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998, pp. 147–160. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Packer, T.L., Embley, D.W.: Cost effective ontology population with data from lists in ocred historical documents. In: Proceedings of the 2nd International Workshop on Historical Document Imaging and Processing (HIP 2013), Washington, D.C, USA (to appear, August 2013)

    Google Scholar 

  5. Park, J.S., Embley, D.W.: Extracting and organizing facts of interest from ocred historical documents. In: Proceedings of the 13th Annual Family History Technology Workshop, Salt Lake City, Utah, USA (March 2013)

    Google Scholar 

  6. Embley, D.W., Zitzelberger, A.: Theoretical foundations for enabling a web of knowledge. In: Link, S., Prade, H. (eds.) FoIKS 2010. LNCS, vol. 5956, pp. 211–229. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Embley, D.W., Liddle, S.W., Lonsdale, D.W., Park, J.S., Shin, B.-J., Zitzelberger, A.J.: Cross-language hybrid keyword and semantic search. In: Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012 Main Conference 2012. LNCS, vol. 7532, pp. 190–203. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Cannaday, A.B.: Solving cycling pedigrees or “loops” by analyzing birth ranges and parent-child relationships. In: Proceedings of the 13th Annual Family History Technology Workshop, Salt Lake City, Utah, USA (March 2013)

    Google Scholar 

  9. Batini, C.: Data quality vs big data quality: Similarities and differences. In: Proceedings of the 1st International Workshop on Modeling for Data-Intensive Computing, Florence, Italy (October 2012)

    Google Scholar 

  10. Tijerino, Y.A., Embley, D.W., Lonsdale, D.W., Ding, Y., Nagy, G.: Toward ontology generation from tables. World Wide Web: Internet and Web Information Systems 8(3), 261–285 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Embley, D.W., Liddle, S.W. (2013). Big Data—Conceptual Modeling to the Rescue. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds) Conceptual Modeling. ER 2013. Lecture Notes in Computer Science, vol 8217. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41924-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41924-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41923-2

  • Online ISBN: 978-3-642-41924-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics