Abstract
Research in relational keyword search has been focused on the efficient computation of results as well as strategies to rank and output the most relevant ones. However, the challenge to retrieve the intended results remains. Existing relational keyword search techniques suffer from the problem of returning overwhelming number of results, many of which may not be useful. In this work, we adopt a semantic approach to relational keyword search via an Object-Relationship-Mixed data graph. This graph is constructed based on database schema constraints to capture the semantics of objects and relationships in the data. Each node in the ORM data graph represents either an object, or a relationship, or both. We design an algorithm that utilizes the ORM data graph to process keyword queries. Experiment results show our approach returns more informative results compared to existing methods, and is efficient.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, S., Chaudhuri, S., Das, G.: DBXplorer: A system for keyword-based search over relational databases. In: ICDE (2002)
Balmin, A., Hristidis, V., Papakonstantinou, Y.: Objectrank: authority-based keyword search in databases. In: VLDB (2004)
Bao, Z., Ling, T.W., Chen, B., Lu, J.: Effective xml keyword search with relevance oriented ranking. In: ICDE (2009)
Bergamaschi, S., Domnori, E., Guerra, F., Trillo Lado, R., Velegrakis, Y.: Keyword search over relational databases: a metadata approach. In: SIGMOD (2011)
Cyganiak, R.: D2RQ benchemarking, http://sites.wiwiss.fu-berlin.de/suhl/bizer/d2rq/benchmarks/
Ding, B., Yu, J.X., Wang, S., Qin, L., Zhang, X., Lin, X.: Finding top-k min-cost connected trees in databases. In: ICDE (2007)
Fakas, G.J., Cai, Z., Mamoulis, N.: Size-l object summaries for relational keyword search. Proc. VLDB Endow. (2011)
He, H., Wang, H., Yang, J., Yu, P.S.: BLINKS: ranked keyword searches on graphs. In: SIGMOD (2007)
Hristidis, V., Gravano, L., Papakonstantinou, Y.: Efficient IR-style keyword search over relational databases. In: VLDB (2003)
Hristidis, V., Papakonstantinou, Y.: Discover: keyword search in relational databases. In: VLDB (2002)
Hulgeri, A., Nakhe, C.: Keyword searching and browsing in databases using banks. In: ICDE (2002)
Kacholia, V., Pandit, S., Chakrabarti, S.: Bidirectional expansion for keyword search on graph databases. In: VLDB (2005)
Kargar, M., An, A.: Keyword search in graphs: finding r-cliques. Proc. VLDB Endow. (2011)
Li, G., Ooi, B.C., Feng, J.: EASE: an effective 3-in-1 keyword search method for unstructured, semi-structured and structured data. In: SIGMOD (2008)
Ling, T.W., Lee, M.L.: Relational to entity-relationship schema translation using semantic and inclusion dependencies. Integr. Comput.-Aided Eng. (1995)
Liu, F., Yu, C., Meng, W., Chowdhury, A.: Effective keyword search in relational databases. In: SIGMOD (2006)
Luo, Y., Lin, X., Wang, W., Zhou, X.: Spark: top-k keyword query in relational databases. In: SIGMOD (2007)
Nandi, A., Jagadish, H.V.: Qunits: queried units for database search. In: CIDR (2009)
Yan, L.-L., Ling, T.W.: Translating relational schema with constraints into OODB schema. In: Database Semantics Conference (1933)
Yu, X., Shi, H.: CI-Rank: Ranking keyword search results based on collective importance. In: ICDE (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zeng, Z., Bao, Z., Lee, M.L., Ling, T.W. (2013). A Semantic Approach to Keyword Search over Relational Databases. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds) Conceptual Modeling. ER 2013. Lecture Notes in Computer Science, vol 8217. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41924-9_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-41924-9_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41923-2
Online ISBN: 978-3-642-41924-9
eBook Packages: Computer ScienceComputer Science (R0)