Abstract
Manifold learning algorithms have been demonstrated to be effective for hyperspectral data dimension reduction (DR). However, the low dimensional feature representation resulted by traditional manifold learning algorithms could not preserve the nonnegative property of the hyperspectral data, which leads inconsistency with the psychological intuition of “combining parts to form a whole”. In this paper, we introduce a nonnegative discriminative manifold learning (NDML) algorithm for hyperspectral data DR, which yields a discriminative and low dimensional feature representation, with psychological and physical evidence in the human brain. Our method benefits from both the nonnegative matrix factorization (NMF) algorithm and the discriminative manifold learning (DML) algorithm. We apply the NDML algorithm to hyperspectral remote sensing image classification on HYDICE dataset. Experimental results confirm the efficiency of the proposed NDML algorithm, compared with some existing manifold learning based DR methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Harsanyi, J.C., Chang, C.-I.: Hyperspectral Image Classification and Dimensionality Reduction: An Orthogonal Subspace Projection Approach. IEEE Trans. Geosci. Remote Sens. 32(4), 779–785 (1994)
Jimenez, L.O., Landgrebe, D.A.: Hyperspectral Data Analysis and Supervised Feature Reduction Via Projection Pursuit. IEEE Trans. Geosci. Remote Sens. 37(6), 2653–2667 (1999)
Zhang, L., Zhang, L., Tao, D., Huang, X.: Tensor Discriminative Locality Alignment for Hyperspectral Image Spectral-Spatial Feature Extraction. IEEE Trans. Geosci. 51(1), 242–256 (2013)
Roweis, S.T., Saul, L.K.: Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290(22), 2323–2326 (2000)
Balasubramanian, M., Schwartz, E.L.: The Isomap Algorithm and Topological Stability. Science 295(5552), 7 (2002)
Bachmann, C.M., Ainsworth, T.L., Fusina, R.A.: Exploiting Manifold Geometry in Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 43(3), 441–454 (2005)
Zhang, L., Zhang, L., Tao, D., Huang, X.: On Combining Multiple Features for Hyper-spectral Remote Sensing Image Classification. IEEE Trans. Geosci. Remote Sens. 50(3), 879–893 (2012)
Ma, L., Crawford, M.M., Tian, J.: Generalised Supervised Local Tangent Space Alignment for Hyperspectral Image Classification. Electron. Lett. 46(7), 497–498 (2010)
Li, W., Prasad, S., Fowler, J.E., Bruce, L.M.: Locality-Preserving Dimensionality Re-duction and Classification for Hyperspectral Image Analysis. IEEE Trans. Geosci. 50(4), 1185–1198 (2012)
Du, B., Zhang, L., Zhang, L., Chen, T., Wu, K.: A Discriminative Manifold Learning Based Dimension Reduction Method. Int. J. Fuzzy Syst. 14(2), 272–277 (2012)
Shi, Q., Zhang, L., Du, B.: Semi-Supervised Discriminative Locally Enhanced Alignment for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 51 (2013) doi:10.1109/TGRS.2012.2230445
Guan, N., Tao, D., Luo, Z., Yuan, B.: Non-Negative Patch Alignment Framework. IEEE Trans. Neural Networ. 22(8), 1218–1230 (2011)
Lee, D.D., Seung, H.S.: Learning the Parts of Objects by Non-negative Matrix Factorization. Nature 401(6755), 788–791 (1999)
Cai, D., He, X., Han, J., Huang, T.S.: Graph Regularized Nonnegative Matrix Factorization for Data Representation. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1548–1560 (2011)
Zhang, T., Tao, D., Li, X., Yang, J.: Patch Alignment for Dimensionality Reduction. IEEE Trans. Knowl. Data Eng. 21(9), 1299–1313 (2009)
Yan, S., Xu, D., Zhang, B., Zhang, H.-J., Yang, Q., Lin, S.: Graph Embedding and Ex-tensions: A General Framework for Dimensionality Reduction. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 40–51 (2007)
Lee, D.D., Seung, H.S.: Algorithms for Non-negative Matrix Factorization. In: NIPS, vol. 13, pp. 556–562 (2001)
Guan, N., Tao, D., Luo, Z., Yuan, B.: NeNMF: An Optimal Gradient Method for Non-negative Matrix Factorization. IEEE Trans. Signal Process. 60(6), 2882–2898 (2012)
Shi, L., Zhang, L., Yang, J., Zhang, L., Li, P.: Supervised Graph Embedding for Polarimetric SAR Image Classification. IEEE Geosci. Remote Sens. Lett. 10(2), 216–220 (2013)
Benediktsson, J.A., Palmason, J.A., Sveinsson, J.R.: Classification of Hyperspectral Data From Urban Areas Based on Extended Morphological Profiles. IEEE Trans. Geosci. Remote Sens. 43(3), 480–491 (2005)
Li, C.-H., Kuo, B.-C., Lin, C.-T., Huang, C.-S.: A Spatial-Contextual Support Vector Machine for Remotely Sensed Image Classification. IEEE Trans. Geosci. Remote Sens. 50(3), 784–799 (2012)
Huang, X., Zhang, L.: An Adaptive Mean-Shift Analysis Approach for Object Extraction and Classification From Urban Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 46(12), 4173–4185 (2008)
Mountrakis, G., Im, J., Ogole, C.: Support Vector Machines in Remote Sensing: A Review. ISPRS J. Photogramm. 66(3), 247–259 (2011)
Bazi, Y., Melgani, F.: Toward an Optimal SVM Classification System for Hyperspec-tral Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 44(11), 3374–3385 (2006)
He, X., Niyogi, P.: Locality Preserving Projections. In: NIPS, vol. 16, pp. 153–160 (2004)
He, X., Cai, D., Yan, S., Zhang, H.-J.: Neighborhood Preserving Embedding. In: ICCV, vol. 2, pp. 1208–1213 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, L., Zhang, L., Tao, D., Huang, X., Du, B. (2013). Nonnegative Discriminative Manifold Learning for Hyperspectral Data Dimension Reduction. In: Sun, C., Fang, F., Zhou, ZH., Yang, W., Liu, ZY. (eds) Intelligence Science and Big Data Engineering. IScIDE 2013. Lecture Notes in Computer Science, vol 8261. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42057-3_45
Download citation
DOI: https://doi.org/10.1007/978-3-642-42057-3_45
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-42056-6
Online ISBN: 978-3-642-42057-3
eBook Packages: Computer ScienceComputer Science (R0)