Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Nonnegative Discriminative Manifold Learning for Hyperspectral Data Dimension Reduction

  • Conference paper
Intelligence Science and Big Data Engineering (IScIDE 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8261))

Abstract

Manifold learning algorithms have been demonstrated to be effective for hyperspectral data dimension reduction (DR). However, the low dimensional feature representation resulted by traditional manifold learning algorithms could not preserve the nonnegative property of the hyperspectral data, which leads inconsistency with the psychological intuition of “combining parts to form a whole”. In this paper, we introduce a nonnegative discriminative manifold learning (NDML) algorithm for hyperspectral data DR, which yields a discriminative and low dimensional feature representation, with psychological and physical evidence in the human brain. Our method benefits from both the nonnegative matrix factorization (NMF) algorithm and the discriminative manifold learning (DML) algorithm. We apply the NDML algorithm to hyperspectral remote sensing image classification on HYDICE dataset. Experimental results confirm the efficiency of the proposed NDML algorithm, compared with some existing manifold learning based DR methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Harsanyi, J.C., Chang, C.-I.: Hyperspectral Image Classification and Dimensionality Reduction: An Orthogonal Subspace Projection Approach. IEEE Trans. Geosci. Remote Sens. 32(4), 779–785 (1994)

    Article  Google Scholar 

  2. Jimenez, L.O., Landgrebe, D.A.: Hyperspectral Data Analysis and Supervised Feature Reduction Via Projection Pursuit. IEEE Trans. Geosci. Remote Sens. 37(6), 2653–2667 (1999)

    Article  Google Scholar 

  3. Zhang, L., Zhang, L., Tao, D., Huang, X.: Tensor Discriminative Locality Alignment for Hyperspectral Image Spectral-Spatial Feature Extraction. IEEE Trans. Geosci. 51(1), 242–256 (2013)

    Article  Google Scholar 

  4. Roweis, S.T., Saul, L.K.: Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290(22), 2323–2326 (2000)

    Article  Google Scholar 

  5. Balasubramanian, M., Schwartz, E.L.: The Isomap Algorithm and Topological Stability. Science 295(5552), 7 (2002)

    Article  Google Scholar 

  6. Bachmann, C.M., Ainsworth, T.L., Fusina, R.A.: Exploiting Manifold Geometry in Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 43(3), 441–454 (2005)

    Article  Google Scholar 

  7. Zhang, L., Zhang, L., Tao, D., Huang, X.: On Combining Multiple Features for Hyper-spectral Remote Sensing Image Classification. IEEE Trans. Geosci. Remote Sens. 50(3), 879–893 (2012)

    Article  Google Scholar 

  8. Ma, L., Crawford, M.M., Tian, J.: Generalised Supervised Local Tangent Space Alignment for Hyperspectral Image Classification. Electron. Lett. 46(7), 497–498 (2010)

    Article  Google Scholar 

  9. Li, W., Prasad, S., Fowler, J.E., Bruce, L.M.: Locality-Preserving Dimensionality Re-duction and Classification for Hyperspectral Image Analysis. IEEE Trans. Geosci. 50(4), 1185–1198 (2012)

    Article  Google Scholar 

  10. Du, B., Zhang, L., Zhang, L., Chen, T., Wu, K.: A Discriminative Manifold Learning Based Dimension Reduction Method. Int. J. Fuzzy Syst. 14(2), 272–277 (2012)

    Google Scholar 

  11. Shi, Q., Zhang, L., Du, B.: Semi-Supervised Discriminative Locally Enhanced Alignment for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 51 (2013) doi:10.1109/TGRS.2012.2230445

    Google Scholar 

  12. Guan, N., Tao, D., Luo, Z., Yuan, B.: Non-Negative Patch Alignment Framework. IEEE Trans. Neural Networ. 22(8), 1218–1230 (2011)

    Article  Google Scholar 

  13. Lee, D.D., Seung, H.S.: Learning the Parts of Objects by Non-negative Matrix Factorization. Nature 401(6755), 788–791 (1999)

    Article  Google Scholar 

  14. Cai, D., He, X., Han, J., Huang, T.S.: Graph Regularized Nonnegative Matrix Factorization for Data Representation. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1548–1560 (2011)

    Article  Google Scholar 

  15. Zhang, T., Tao, D., Li, X., Yang, J.: Patch Alignment for Dimensionality Reduction. IEEE Trans. Knowl. Data Eng. 21(9), 1299–1313 (2009)

    Article  Google Scholar 

  16. Yan, S., Xu, D., Zhang, B., Zhang, H.-J., Yang, Q., Lin, S.: Graph Embedding and Ex-tensions: A General Framework for Dimensionality Reduction. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 40–51 (2007)

    Article  Google Scholar 

  17. Lee, D.D., Seung, H.S.: Algorithms for Non-negative Matrix Factorization. In: NIPS, vol. 13, pp. 556–562 (2001)

    Google Scholar 

  18. Guan, N., Tao, D., Luo, Z., Yuan, B.: NeNMF: An Optimal Gradient Method for Non-negative Matrix Factorization. IEEE Trans. Signal Process. 60(6), 2882–2898 (2012)

    Article  MathSciNet  Google Scholar 

  19. Shi, L., Zhang, L., Yang, J., Zhang, L., Li, P.: Supervised Graph Embedding for Polarimetric SAR Image Classification. IEEE Geosci. Remote Sens. Lett. 10(2), 216–220 (2013)

    Article  Google Scholar 

  20. https://engineering.purdue.edu/~biehl/MultiSpec/

  21. Benediktsson, J.A., Palmason, J.A., Sveinsson, J.R.: Classification of Hyperspectral Data From Urban Areas Based on Extended Morphological Profiles. IEEE Trans. Geosci. Remote Sens. 43(3), 480–491 (2005)

    Article  Google Scholar 

  22. Li, C.-H., Kuo, B.-C., Lin, C.-T., Huang, C.-S.: A Spatial-Contextual Support Vector Machine for Remotely Sensed Image Classification. IEEE Trans. Geosci. Remote Sens. 50(3), 784–799 (2012)

    Article  Google Scholar 

  23. Huang, X., Zhang, L.: An Adaptive Mean-Shift Analysis Approach for Object Extraction and Classification From Urban Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 46(12), 4173–4185 (2008)

    Article  Google Scholar 

  24. Mountrakis, G., Im, J., Ogole, C.: Support Vector Machines in Remote Sensing: A Review. ISPRS J. Photogramm. 66(3), 247–259 (2011)

    Article  Google Scholar 

  25. Bazi, Y., Melgani, F.: Toward an Optimal SVM Classification System for Hyperspec-tral Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 44(11), 3374–3385 (2006)

    Article  Google Scholar 

  26. He, X., Niyogi, P.: Locality Preserving Projections. In: NIPS, vol. 16, pp. 153–160 (2004)

    Google Scholar 

  27. He, X., Cai, D., Yan, S., Zhang, H.-J.: Neighborhood Preserving Embedding. In: ICCV, vol. 2, pp. 1208–1213 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, L., Zhang, L., Tao, D., Huang, X., Du, B. (2013). Nonnegative Discriminative Manifold Learning for Hyperspectral Data Dimension Reduction. In: Sun, C., Fang, F., Zhou, ZH., Yang, W., Liu, ZY. (eds) Intelligence Science and Big Data Engineering. IScIDE 2013. Lecture Notes in Computer Science, vol 8261. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42057-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42057-3_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42056-6

  • Online ISBN: 978-3-642-42057-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics