Abstract
Companies realize their services by business processes to stay competitive in a dynamic market environment. In particular, they track the current state of the process to detect undesired deviations, to provide customers with predicted remaining durations, and to improve the ability to schedule resources accordingly. In this setting, we propose an approach to predict remaining process execution time, taking into account passed time since the last observed event.
While existing approaches update predictions only upon event arrival and subtract elapsed time from the latest predictions, our method also considers expected events that have not yet occurred, resulting in better prediction quality. Moreover, the prediction approach is based on the Petri net formalism and is able to model concurrency appropriately. We present the algorithm and its implementation in ProM and compare its predictive performance to state-of-the-art approaches in simulated experiments and in an industry case study.
Chapter PDF
Similar content being viewed by others
Keywords
References
van der Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)
van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer (2011)
van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on process models for conformance checking and performance analysis. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2, 182–192 (2012)
van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on process mining. Information Systems 36(2), 450–475 (2011)
Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 469–483. Springer, Heidelberg (1998)
Bobbio, A., Telek, M.: Computational restrictions for SPN with generally distributed transition times. In: Echtle, K., Powell, D.R., Hammer, D. (eds.) EDCC 1994. LNCS, vol. 852, pp. 131–148. Springer, Heidelberg (1994)
van Dongen, B.F., Crooy, R.A., van der Aalst, W.M.P.: Cycle time prediction: When will this case finally be finished? In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part I. LNCS, vol. 5331, pp. 319–336. Springer, Heidelberg (2008)
Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for predicting business process performances. In: Meersman, R., et al. (eds.) OTM 2012, Part I. LNCS, vol. 7565, pp. 287–304. Springer, Heidelberg (2012)
De Gooijer, J.G., Hyndman, R.J.: 25 years of time series forecasting. International Journal of Forecasting 22(3), 443–473 (2006)
Hwang, S.Y., Wang, H., Tang, J., Srivastava, J.: A probabilistic approach to modeling and estimating the QoS of web-services-based workflows. Information Sciences 177(23), 5484–5503 (2007)
Härdle, W.: Applied nonparametric regression. Cambridge University Press (1990)
Jiang, W., Au, T., Tsui, K.L.: A statistical process control approach to business activity monitoring. IIE Transactions 39(3), 235–249 (2007)
Kang, B., Kim, D., Kang, S.H.: Periodic performance prediction for real-time business process monitoring. Industrial Management & Data Systems 112(1), 4–23 (2011)
Leitner, P., Wetzstein, B., Rosenberg, F., Michlmayr, A., Dustdar, S., Leymann, F.: Runtime prediction of service level agreement violations for composite services. In: Dan, A., Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave 2009. LNCS, vol. 6275, pp. 176–186. Springer, Heidelberg (2010)
Lohmann, N., Verbeek, E., Dijkman, R.: Petri net transformations for business processes – A survey. In: Jensen, K., van der Aalst, W.M.P. (eds.) ToPNoC II. LNCS, vol. 5460, pp. 46–63. Springer, Heidelberg (2009)
Marsan, M.A., Balbo, G., Bobbio, A., Chiola, G., Conte, G., Cumani, A.: The effect of execution policies on the semantics and analysis of stochastic Petri nets. IEEE Transactions on Software Engineering 15(7), 832–846 (1989)
Marsan, M.A., Conte, G., Balbo, G.: A class of generalized stochastic Petri nets for the performance evaluation of multiprocessor systems. ACM TOCS 2(2), 93–122 (1984)
Pika, A., van der Aalst, W.M.P., Fidge, C.J., ter Hofstede, A.H.M., Wynn, M.T.: Predicting deadline transgressions using event logs. In: La Rosa, M., Soffer, P. (eds.) BPM 2012 Workshops. LNBIP, vol. 132, pp. 211–216. Springer, Heidelberg (2013)
Rogge-Solti, A., van der Aalst, W.M.P., Weske, M.: Discovering stochastic Petri nets with arbitrary delay distributions from event logs. In: BPM Workshops. Springer, Heigelberg (to appear)
Rozinat, A., Wynn, M.T., van der Aalst, W.M.P., ter Hofstede, A.H.M., Fidge, C.J.: Workflow simulation for operational decision support. Data & Knowledge Engineering 68(9), 834–850 (2009)
Strum, D.P., May, J.H., Vargas, L.G.: Modeling the uncertainty of surgical procedure times: Comparison of log-normal and normal models. Anesthesiology 92(4), 1160–1167 (2000)
Weske, M.: Business Process Management: Concepts, Languages, Architectures, 2nd edn. Springer (2012)
Zeng, L., Lingenfelder, C., Lei, H., Chang, H.: Event-driven quality of service prediction. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 147–161. Springer, Heidelberg (2008)
Zheng, H., Yang, J., Zhao, W., Bouguettaya, A.: QoS analysis for web service compositions based on probabilistic qoS. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 47–61. Springer, Heidelberg (2011)
Zimmermann, A.: Modeling and evaluation of stochastic Petri nets with TimeNET 4.1. In: 2012 6th International Conference on Performance Evaluation Methodologies and Tools (VALUETOOLS), pp. 54–63. IEEE (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rogge-Solti, A., Weske, M. (2013). Prediction of Remaining Service Execution Time Using Stochastic Petri Nets with Arbitrary Firing Delays. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds) Service-Oriented Computing. ICSOC 2013. Lecture Notes in Computer Science, vol 8274. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45005-1_27
Download citation
DOI: https://doi.org/10.1007/978-3-642-45005-1_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-45004-4
Online ISBN: 978-3-642-45005-1
eBook Packages: Computer ScienceComputer Science (R0)