Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Testing Mutual Duality of Planar Graphs

  • Conference paper
Algorithms and Computation (ISAAC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8283))

Included in the following conference series:

  • 1573 Accesses

Abstract

We introduce and study the problem Mutual Planar Duality, which asks for planar graphs G 1 and G 2 whether G 1 can be embedded such that its dual is isomorphic to G 2. We show NP-completeness for general graphs and give a linear-time algorithm for biconnected graphs.

We consider the common dual relation ~, where G 1 ~G 2 if and only they admit embeddings that result in the same dual graph. We show that ~ is an equivalence relation on the set of biconnected graphs and devise a succinct, SPQR-tree-like representation of its equivalence classes. To solve Mutual Planar Duality for biconnected graphs, we show how to do isomorphism testing for two such representations in linear time.

A special case of Mutual Planar Duality is testing whether a graph is self-dual. Our algorithm can handle the case of biconnected graphs in linear time and our NP-hardness proof extends to self-duality and also to map self-duality testing (which additionally requires to preserve the embedding).

Partially supported by ESF project 10-EuroGIGA-OP-003 GraDR “Graph Drawings and Representations”. This work began during a visit of Angelini at Karlsruhe Institute of Technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angelini, P., Di Battista, G., Patrignani, M.: Finding a minimum-depth embedding of a planar graph in O(n 4) time. Algorithmica 60, 890–937 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Angelini, P., Bläsius, T., Rutter, I.: Testing mutual duality of planar graphs. CoRR abs/1303.1640 (2013)

    Google Scholar 

  3. Archdeacon, D., Richter, R.B.: The construction and classification of self-dual spherical polyhedra. Journal of Combinatorial Theory, Series B 54(1), 37–63 (1992)

    Article  MathSciNet  Google Scholar 

  4. Bienstock, D., Monma, C.: On the complexity of embedding planar graphs to minimize certain distance measures. Algorithmica 5, 93–109 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Di Battista, G., Tamassia, R.: On-line maintenance of triconnected components with SPQR-trees. Algorithmica 15(4), 302–318 (1996)

    MathSciNet  MATH  Google Scholar 

  6. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  7. Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Hopcroft, J.E., Wong, J.K.: Linear time algorithm for isomorphism of planar graphs (preliminary report). In: Proceedings of the 6th Annual ACM Symposium on Theory of Computing (STOC 1974), pp. 172–184. ACM (1974)

    Google Scholar 

  9. Raghavendra Rao, B., Jayalal Sarma, M.: On the complexity of matroid isomorphism problem. Theory of Computing Systems 49(2), 246–272 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Servatius, B., Christopher, P.R.: Construction of self-dual graphs. Am. Math. Monthly 99(2), 153–158 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Servatius, B., Servatius, H.: Self-dual graphs. Discrete Math. 149(1-3), 223–232 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Tutte, W.T.: Connectivity in matroids. Canad. J. Math. 18, 1301–1324 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  13. Whitney, H.: Congruent graphs and the connectivity of graphs. Amer. J. Math. 54(1), 150–168 (1932)

    Article  MathSciNet  Google Scholar 

  14. Whitney, H.: 2-isomorphic graphs. Amer. J. Math. 55, 245–254 (1933)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Angelini, P., Bläsius, T., Rutter, I. (2013). Testing Mutual Duality of Planar Graphs. In: Cai, L., Cheng, SW., Lam, TW. (eds) Algorithms and Computation. ISAAC 2013. Lecture Notes in Computer Science, vol 8283. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45030-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45030-3_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45029-7

  • Online ISBN: 978-3-642-45030-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics