Abstract
The (distance) k-sector is a generalization of the concept of bisectors proposed by Asano, Matoušek and Tokuyama. We prove the uniqueness of the 4-sector of two points in the Euclidean plane. Despite the simplicity of the unique 4-sector (which consists of a line and two parabolas), our proof is quite non-trivial. We begin by establishing uniqueness in a small region of the plane, which we show may be perpetually expanded afterward.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Asano, T., Kirkpatrick, D.: Distance trisector curves in regular convex distance metrics. In: Proc. 3rd International Symposium on Voronoi Diagrams in Science and Engineering, pp. 8–17 (2006)
Asano, T., Matoušek, J., Tokuyama, T.: Zone diagrams: Existence, uniqueness, and algorithmic challenge. SIAM Journal on Computing 37(4), 1182–1198 (2007)
Asano, T., Matoušek, J., Tokuyama, T.: The distance trisector curve. Advances in Mathematics 212(1), 338–360 (2007)
Asano, T., Tokuyama, T.: Drawing equally-spaced curves between two points. In: Proc. 14th Fall Workshop on Computational Geometry, pp. 24–25 (2004)
Chun, J., Okada, Y., Tokuyama, T.: Distance trisector of a segment and a point. Interdisciplinary Information Sciences 16(1), 119–125 (2010)
Imai, K., Kawamura, A., Matoušek, J., Reem, D., Tokuyama, T.: Distance k-sectors exist. Computational Geometry 43(9), 713–720 (2010)
Kawamura, A., Matoušek, J., Tokuyama, T.: Zone diagrams in Euclidean spaces and in other normed spaces. Mathematische Annalen 354(4), 1201–1221 (2012)
Monterde, J., Ongay, F.: The distance trisector curve is transcendental. Geometriae Dedicata (in press)
Reem, D., Reich, S.: Zone and double zone diagrams in abstract spaces. Colloquium Mathematicum 115(1), 129–145 (2009)
Reem, D.: On the computation of zone and double zone diagrams. arXiv:1208.3124 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fraser, R., He, M., Kawamura, A., López-Ortiz, A., Munro, J.I., Nicholson, P.K. (2013). The Distance 4-Sector of Two Points Is Unique. In: Cai, L., Cheng, SW., Lam, TW. (eds) Algorithms and Computation. ISAAC 2013. Lecture Notes in Computer Science, vol 8283. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45030-3_57
Download citation
DOI: https://doi.org/10.1007/978-3-642-45030-3_57
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-45029-7
Online ISBN: 978-3-642-45030-3
eBook Packages: Computer ScienceComputer Science (R0)