Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Distance 4-Sector of Two Points Is Unique

  • Conference paper
Algorithms and Computation (ISAAC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8283))

Included in the following conference series:

Abstract

The (distance) k-sector is a generalization of the concept of bisectors proposed by Asano, Matoušek and Tokuyama. We prove the uniqueness of the 4-sector of two points in the Euclidean plane. Despite the simplicity of the unique 4-sector (which consists of a line and two parabolas), our proof is quite non-trivial. We begin by establishing uniqueness in a small region of the plane, which we show may be perpetually expanded afterward.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asano, T., Kirkpatrick, D.: Distance trisector curves in regular convex distance metrics. In: Proc. 3rd International Symposium on Voronoi Diagrams in Science and Engineering, pp. 8–17 (2006)

    Google Scholar 

  2. Asano, T., Matoušek, J., Tokuyama, T.: Zone diagrams: Existence, uniqueness, and algorithmic challenge. SIAM Journal on Computing 37(4), 1182–1198 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Asano, T., Matoušek, J., Tokuyama, T.: The distance trisector curve. Advances in Mathematics 212(1), 338–360 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Asano, T., Tokuyama, T.: Drawing equally-spaced curves between two points. In: Proc. 14th Fall Workshop on Computational Geometry, pp. 24–25 (2004)

    Google Scholar 

  5. Chun, J., Okada, Y., Tokuyama, T.: Distance trisector of a segment and a point. Interdisciplinary Information Sciences 16(1), 119–125 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Imai, K., Kawamura, A., Matoušek, J., Reem, D., Tokuyama, T.: Distance k-sectors exist. Computational Geometry 43(9), 713–720 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kawamura, A., Matoušek, J., Tokuyama, T.: Zone diagrams in Euclidean spaces and in other normed spaces. Mathematische Annalen 354(4), 1201–1221 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Monterde, J., Ongay, F.: The distance trisector curve is transcendental. Geometriae Dedicata (in press)

    Google Scholar 

  9. Reem, D., Reich, S.: Zone and double zone diagrams in abstract spaces. Colloquium Mathematicum 115(1), 129–145 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Reem, D.: On the computation of zone and double zone diagrams. arXiv:1208.3124 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fraser, R., He, M., Kawamura, A., López-Ortiz, A., Munro, J.I., Nicholson, P.K. (2013). The Distance 4-Sector of Two Points Is Unique. In: Cai, L., Cheng, SW., Lam, TW. (eds) Algorithms and Computation. ISAAC 2013. Lecture Notes in Computer Science, vol 8283. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45030-3_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45030-3_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45029-7

  • Online ISBN: 978-3-642-45030-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics