Abstract
Let G and H be two cographs. We show that the problem to determine whether H is a retract of G is NP-complete. We show that this problem is fixed-parameter tractable when parameterized by the order of H. When restricted to the class of threshold graphs or to the class of trivially perfect graphs, the problem becomes tractable in polynomial time. The problem is also solvable in linear time when one cograph is given as an induced subgraph of the other. We characterize absolute retracts for the class of cographs. Foldings generalize retractions. We show that the problem to fold a trivially perfect graph onto a largest possible clique is NP-complete. For a threshold graph this folding number equals its chromatic number and achromatic number.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bandelt, H.: Retracts of hypercubes. Journal of Graph Theory 8, 501–510 (1984)
Bandelt, H., Dählmann, A., Schütte, H.: Absolute retracts of bipartite graphs. Discrete Applied Mathematics 16, 191–215 (1987)
Bodlaender, H.: Achromatic number is NP-complete for cographs and interval graphs. Information Processing Letters 31, 135–138 (1989)
Chvátal, V., Hammer, P.: Aggregation of inequalities in integer programming. Technical Report STAN-CS-75-518, Stanford University, California (1975)
Corneil, D., Perl, Y., Stewart, L.: A linear recognition algorithm for cographs. SIAM Journal on Computing 14, 926–934 (1985)
Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Information and Computation 85, 12–75 (1990)
Damaschke, P.: Induced subgraph isomorphism for cographs is NP-complete. In: Möhring, R.H. (ed.) WG 1990. LNCS, vol. 484, pp. 72–78. Springer, Heidelberg (1991)
Edmonds, J.: Paths, trees, and flowers. Canadian Journal of Mathematics 17, 449–467 (1965)
Feder, T., Hell, P., Jonsson, P., Krokhin, A., Nordh, G.: Retractions to pseudoforests. SIAM Journal on Discrete Mathematics 24, 101–112 (2010)
Fomin, F., Heggernes, P., Kratsch, D.: Exact algorithms for graph homomorphisms. Theory of Computing Systems 41, 381–393 (2007)
Garey, M., Johnson, D.: Computers and intractability: a guide to the theory of NP-completeness. Freeman (1979)
Golovach, P., Lidický, B., Martin, B., Paulusma, D.: Finding vertex-surjective graph homomorphisms. Acta Informatica 49, 381–394 (2012)
Golumbic, M.: Trivially perfect graphs. Discrete Mathematics 24, 105–107 (1978)
Golumbic, M., Goss, C.: Perfect elimination and chordal bipartite graphs. Journal of Graph Theory 2, 155–163 (1978)
Grohe, M.: The complexity of homomorphism and constraint satisfaction problems seen from the other side. Journal of the ACM 54 (2007)
Grohe, M.: Personal communication
Hahn, G., Tardif, C.: Graph homomorphisms: structure and symmetry. In: Hahn, G., Sabidussi, G. (eds.) Graph Symmetry – Algebraic Methods and Applications. NATO ASI Series C: Mathematical and Physical Sciences, vol. 497, pp. 107–166. Kluwer (1997)
Harary, F., Hedetniemi, S.: The achromatic number of a graph. Journal of Combinatorial Theory 8, 154–161 (1970)
Hell, P.: Rétractions de graphes. PhD Thesis, Université de Montréal (1972)
Hell, P., Nešetřil, J.: Graphs and homomorphisms. Oxford University Press (2004)
Howorka, E.: A characterization of distance-hereditary graphs. The Quarterly Journal of Mathematics 28, 417–420 (1977)
Máté, A.: A lower estimate for the achromatic number of irreducible graphs. Discrete Mathematics 33, 171–183 (1981)
Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)
Pesch, E., Poguntke, W.: A characterization of absolute retracts of n-chromatic graphs. Discrete Mathematics 57, 99–104 (1985)
Wolk, E.: A note on “The comparability graph of a tree”. Proceedings of the American Mathematical Society 16, 17–20 (1965)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kloks, T., Wang, YL. (2013). On Retracts, Absolute Retracts, and Folds in Cographs. In: Brandstädt, A., Jansen, K., Reischuk, R. (eds) Graph-Theoretic Concepts in Computer Science. WG 2013. Lecture Notes in Computer Science, vol 8165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45043-3_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-45043-3_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-45042-6
Online ISBN: 978-3-642-45043-3
eBook Packages: Computer ScienceComputer Science (R0)