Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Universal Cycles for Weight-Range Binary Strings

  • Conference paper
Combinatorial Algorithms (IWOCA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8288))

Included in the following conference series:

Abstract

We present an efficient universal cycle construction for the set of binary strings of length n with weight (number of 1s) in the range c, c + 1, …, d where 0 ≤ c < d ≤ n. The construction is based on a simple lemma for gluing universal cycles together, which can be implemented to generate each character in constant amortized time using O(n) space. The Gluing lemma can also be applied to construct universal cycles for other combinatorial objects including passwords and labeled graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bechel, A., LaBounty-Lay, B., Godbole, A.: Universal cycles of discrete functions. In: Proceedings of the Thirty-Ninth Southeastern International Conference on Combinatorics, Graph Theory and Computing, vol. 189, pp. 121–128. Congressus Numerantium (2008)

    Google Scholar 

  2. Blanca, A., Godbole, A.: On universal cycles for new classes of combinatorial structures. SIAM J. Discret. Math. 25(4), 1832–1842 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brockman, G., Kay, B., Snively, E.: On universal cycles of labeled graphs. Electronic Journal of Combinatorics 17(1), 9 (2010)

    MathSciNet  Google Scholar 

  4. Casteels, K., Stevens, B.: Universal cycles for (n − 1)-partitions of an n-set. Discrete Mathematics 309, 5332–5340 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chung, F., Diaconis, P., Graham, R.: Universal cycles for combinatorial structures. Discrete Mathematics 110, 43–59 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. de Bruijn, N.G.: A combinatorial problem. Koninklijke Nederlandse Akademie v. Wetenschappen 49, 758–764 (1946)

    MATH  Google Scholar 

  7. de Bruijn, N.G.: Acknowledgement of priority to C. Flye Sainte-Marie on the counting of circular arrangements of 2n zeros and ones that show each n-letter word exactly once. T.H. Report 75-WSK-06, p. 13 (1975)

    Google Scholar 

  8. Duval, J.P.: Factorizing words over an ordered alphabet. J. Algorithms 4(4), 363–381 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fredericksen, H., Kessler, I.J.: An algorithm for generating necklaces of beads in two colors. Discrete Mathematics 61, 181–188 (1986)

    Article  MathSciNet  Google Scholar 

  10. Fredericksen, H., Maiorana, J.: Necklaces of beads in k colors and k-ary de Bruijn sequences. Discrete Mathematics 23, 207–210 (1978)

    MathSciNet  Google Scholar 

  11. Hierholzer, C., Wiener, C.: Ueber die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren. Mathematische Annalen 6(1), 30–32 (1873)

    Article  MathSciNet  MATH  Google Scholar 

  12. Holroyd, A.E., Ruskey, F., Williams, A.: Shorthand universal cycles for permutations. Algorithmica 64(2), 215–245 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hurlbert, G.: On universal cycles for k-subets of an n-element set. Siam Journal on Discrete Mathematics 7, 598–604 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hurlbert, G., Jackson, B., Stevens, B. (eds.): Generalisations of de Bruijn sequences and Gray codes. Discrete Mathematics 309, 5255–5348 (2009)

    Google Scholar 

  15. Jackson, B.: Universal cycles of k-subsets and k-permutations. Discrete Mathematics 117, 114–150 (1993)

    Article  Google Scholar 

  16. Johnson, R.: Universal cycles for permutations. Discrete Mathematics 309, 5264–5270 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Knuth, D.E.: Generating all tuples and permutations, fascicle 2. The Art of Computer Programming 4 (2005)

    Google Scholar 

  18. Leitner, A., Godbole, A.: Universal cycles of classes of restricted words. Discrete Mathematics 310, 3303–3309 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rosen, K.H.: Discrete Mathematics and Its Applications, 5th edn. McGraw-Hill Higher Education (2002)

    Google Scholar 

  20. Ruskey, F., Sawada, J., Williams, A.: De Bruijn sequences for fixed-weight binary strings. SIAM Journal on Discrete Mathematics 26(2), 605–617 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ruskey, F., Williams, A.: An explicit universal cycle for the (n − 1)-permutations of an n-set. ACM Transactions on Algorithms 6(3), 12 (2010)

    Google Scholar 

  22. Ruskey, F., Williams, A., Sawada, J.: Binary bubble languages and cool-lex order. J. Comb. Theory, Ser. A 119(1), 155–169 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sawada, J., Ruskey, F.: An efficient algorithm for generating necklaces with fixed density. In: Tarjan, R.E., Warnow, T. (eds.) SODA, pp. 752–758. ACM/SIAM (1999)

    Google Scholar 

  24. Sawada, J., Stevens, B., Williams, A.: De bruijn sequences for the binary strings with maximum density. In: Katoh, N., Kumar, A. (eds.) WALCOM 2011. LNCS, vol. 6552, pp. 182–190. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  25. Stevens, B., Williams, A.: The coolest order of binary strings. In: Kranakis, E., Krizanc, D., Luccio, F. (eds.) FUN 2012. LNCS, vol. 7288, pp. 322–333. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  26. Stevens, B., Williams, A.: The coolest way to generate binary strings. Theory of Computing Systems, 1–27 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sawada, J., Williams, A., Wong, D. (2013). Universal Cycles for Weight-Range Binary Strings. In: Lecroq, T., Mouchard, L. (eds) Combinatorial Algorithms. IWOCA 2013. Lecture Notes in Computer Science, vol 8288. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45278-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45278-9_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45277-2

  • Online ISBN: 978-3-642-45278-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics