Abstract
We present an efficient universal cycle construction for the set of binary strings of length n with weight (number of 1s) in the range c, c + 1, …, d where 0 ≤ c < d ≤ n. The construction is based on a simple lemma for gluing universal cycles together, which can be implemented to generate each character in constant amortized time using O(n) space. The Gluing lemma can also be applied to construct universal cycles for other combinatorial objects including passwords and labeled graphs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bechel, A., LaBounty-Lay, B., Godbole, A.: Universal cycles of discrete functions. In: Proceedings of the Thirty-Ninth Southeastern International Conference on Combinatorics, Graph Theory and Computing, vol. 189, pp. 121–128. Congressus Numerantium (2008)
Blanca, A., Godbole, A.: On universal cycles for new classes of combinatorial structures. SIAM J. Discret. Math. 25(4), 1832–1842 (2011)
Brockman, G., Kay, B., Snively, E.: On universal cycles of labeled graphs. Electronic Journal of Combinatorics 17(1), 9 (2010)
Casteels, K., Stevens, B.: Universal cycles for (n − 1)-partitions of an n-set. Discrete Mathematics 309, 5332–5340 (2009)
Chung, F., Diaconis, P., Graham, R.: Universal cycles for combinatorial structures. Discrete Mathematics 110, 43–59 (1992)
de Bruijn, N.G.: A combinatorial problem. Koninklijke Nederlandse Akademie v. Wetenschappen 49, 758–764 (1946)
de Bruijn, N.G.: Acknowledgement of priority to C. Flye Sainte-Marie on the counting of circular arrangements of 2n zeros and ones that show each n-letter word exactly once. T.H. Report 75-WSK-06, p. 13 (1975)
Duval, J.P.: Factorizing words over an ordered alphabet. J. Algorithms 4(4), 363–381 (1983)
Fredericksen, H., Kessler, I.J.: An algorithm for generating necklaces of beads in two colors. Discrete Mathematics 61, 181–188 (1986)
Fredericksen, H., Maiorana, J.: Necklaces of beads in k colors and k-ary de Bruijn sequences. Discrete Mathematics 23, 207–210 (1978)
Hierholzer, C., Wiener, C.: Ueber die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren. Mathematische Annalen 6(1), 30–32 (1873)
Holroyd, A.E., Ruskey, F., Williams, A.: Shorthand universal cycles for permutations. Algorithmica 64(2), 215–245 (2012)
Hurlbert, G.: On universal cycles for k-subets of an n-element set. Siam Journal on Discrete Mathematics 7, 598–604 (1994)
Hurlbert, G., Jackson, B., Stevens, B. (eds.): Generalisations of de Bruijn sequences and Gray codes. Discrete Mathematics 309, 5255–5348 (2009)
Jackson, B.: Universal cycles of k-subsets and k-permutations. Discrete Mathematics 117, 114–150 (1993)
Johnson, R.: Universal cycles for permutations. Discrete Mathematics 309, 5264–5270 (2009)
Knuth, D.E.: Generating all tuples and permutations, fascicle 2. The Art of Computer Programming 4 (2005)
Leitner, A., Godbole, A.: Universal cycles of classes of restricted words. Discrete Mathematics 310, 3303–3309 (2010)
Rosen, K.H.: Discrete Mathematics and Its Applications, 5th edn. McGraw-Hill Higher Education (2002)
Ruskey, F., Sawada, J., Williams, A.: De Bruijn sequences for fixed-weight binary strings. SIAM Journal on Discrete Mathematics 26(2), 605–617 (2012)
Ruskey, F., Williams, A.: An explicit universal cycle for the (n − 1)-permutations of an n-set. ACM Transactions on Algorithms 6(3), 12 (2010)
Ruskey, F., Williams, A., Sawada, J.: Binary bubble languages and cool-lex order. J. Comb. Theory, Ser. A 119(1), 155–169 (2012)
Sawada, J., Ruskey, F.: An efficient algorithm for generating necklaces with fixed density. In: Tarjan, R.E., Warnow, T. (eds.) SODA, pp. 752–758. ACM/SIAM (1999)
Sawada, J., Stevens, B., Williams, A.: De bruijn sequences for the binary strings with maximum density. In: Katoh, N., Kumar, A. (eds.) WALCOM 2011. LNCS, vol. 6552, pp. 182–190. Springer, Heidelberg (2011)
Stevens, B., Williams, A.: The coolest order of binary strings. In: Kranakis, E., Krizanc, D., Luccio, F. (eds.) FUN 2012. LNCS, vol. 7288, pp. 322–333. Springer, Heidelberg (2012)
Stevens, B., Williams, A.: The coolest way to generate binary strings. Theory of Computing Systems, 1–27 (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sawada, J., Williams, A., Wong, D. (2013). Universal Cycles for Weight-Range Binary Strings. In: Lecroq, T., Mouchard, L. (eds) Combinatorial Algorithms. IWOCA 2013. Lecture Notes in Computer Science, vol 8288. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45278-9_33
Download citation
DOI: https://doi.org/10.1007/978-3-642-45278-9_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-45277-2
Online ISBN: 978-3-642-45278-9
eBook Packages: Computer ScienceComputer Science (R0)