Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Self Organising Maps on Compute Unified Device Architecture for the Performance Monitoring of Emergency Call-Taking Centre

  • Chapter
Transactions on Computational Science XXI

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 8160))

Abstract

The collaborative emergency call-taking information system in the Czech Republic forms a network of cooperating emergency call centers processing emergency calls to the European 112 emergency number. Large amounts of various incident records are stored in the databases. The data can be used for mining spatial and temporal anomalies, as well as for the monitoring and analysis of the performance of the emergency call- taking system. In this paper, we describe a method for knowledge discovery and visualization targeted at the performance analysis of the system with respect to the organization of the emergency call-taking information system and its data characteristics. The method is based on the Kohonen Self-Organising Map (SOM) algorithm and its extension, the Growing Grid algorithm. To handle the massive data, the growing grid algorithm is implemented in a parallel environment using compute unified device architecture. Experimental results illustrate that the proposed method is very efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bača, R., Krátký, M., Snášel, V.: Power Outage Data Analysis via SOM Neural Networks. In: Proceedings of ELNET 2008, Ostrava, pp. 87–98 (2008)

    Google Scholar 

  2. Bersini, H., Varela, F.J.: Hints for Adaptive Problem Solving Gleaned from Immune Networks. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 343–354. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  3. Brockett, P.L., Xia, X., Derrig, R.A.: Using Kohonen’s Self-organizing Feature Map to Uncover Automobile Bodily Injury Claims Fraud. Journal of Risk and Insurance 65(2), 245–274 (1998)

    Article  Google Scholar 

  4. Dittenbach, M., Merkl, D., Rauber, A.: Organizing and Exploring High-Dimensional Data with the Growing Hierarchical Self-organizing Map. In: Proceedings of the 1st International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2002), pp. 626–630 (2002)

    Google Scholar 

  5. Farmer, J.D., Packard, N.H., Perelson, A.S.: The immune system, adaptation, and machine learning. Physica D 22, 187–204; Reprinted in: Farmer, D., Lapedes, A., Packard, N., Wendroff, B. (eds.): Evolution, Games and Learning, pp. 187–204. North-Holland, Amsterdam (1986)

    Google Scholar 

  6. Fritzke, B.: A Growing Neural Gas Network Learns Topologies. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) Advances in Neural Information Processing Systems, vol. 7, pp. 625–632. MIT Press, Cambridge (1995)

    Google Scholar 

  7. Fritzke, B.: Growing Grid – A self-organizing network with constant neighbourhood range and adaptation strength. Neural Processing Letters 2(5), 9–13 (1995)

    Article  Google Scholar 

  8. Gan, G., Ma, C., Wu, J.: Data Clustering: Theory, Algorithms and Applications. SIAM, Philadelphia (2007)

    Book  Google Scholar 

  9. Gonzalez, F., Dasgupta, D.: Neuro-Immune and Self-Organizing Map Approaches to Anomaly Detection: A Comparison. In: Proceedings of the 1st International Conference on Artificial Immune Systems (ICARIS), Canterbury, UK, pp. 203–211 (September 2002)

    Google Scholar 

  10. Grosan, C., Abraham, A., Hassanien, A.: Designing Resilient Networks Using Multicriteria Metaheuristics. Telecommunication Systems: Modelling, Analysis, Design and Management 40(1), 75–88 (2008)

    Google Scholar 

  11. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice-Hall, Upper Saddle (1999)

    MATH  Google Scholar 

  12. Jolliffe, I.: Principal component analysis, 2nd edn. Springer, Berlin (2002)

    MATH  Google Scholar 

  13. Kaski, S., Lagus, K.: Comparing Self-Organizing Maps. In: Vorbrüggen, J.C., von Seelen, W., Sendhoff, B. (eds.) ICANN 1996. LNCS, vol. 1112, pp. 809–814. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  14. Klement, P., Snášel, V.: Anomaly Detection in Emergency Call Data – the First Step to Intelligent Emergency Call System Management. In: Proceedings of the 1st International Conference on Intelligent Networking and Collaborative Systems (INCoS 2009), Barcelona, Spain, pp. 226–232 (November 2009)

    Google Scholar 

  15. Klement, P., Snášel, V.: SOM neural network - a piece of intelligence in disaster management. In: Nature & Biologically Inspired Computing, NaBIC 2009, pp. 872–877 (2009)

    Google Scholar 

  16. Kohonen, T.: Self-Organizing Maps. Springer, Berlin (1995)

    Book  Google Scholar 

  17. Konak, A., Bartolacci, M.R.: Designing survivable resilient networks: a stochastic hybrid genetic algorithm approach, Omega; Special Issue on Telecommunications Applications 35(6), 645–658 (2007)

    Google Scholar 

  18. Lichodzijewski, P., Zincir-Heywood, A.N., Heywood, M.I.: Dynamic Intrusion Detection Using Self-Organizing Maps. In: The 14th Annual Canadian Information Technology Security Symposium, CITSS (2002)

    Google Scholar 

  19. Lloyd, S.P.: Least Squares Quantization in PCM. IEEE Transactions on Information Theory 28(2), 129–137 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mitra, S., Pal, S.K.: Self-organizing neural network as a fuzzy classifier. IEEE Trans. Systems, Man, Cybernetics 24(3), 385–399 (1994)

    Article  Google Scholar 

  21. Paprzycki, M., Abraham, A., Guo, R., Mukkamala, S.: Data Mining Approach for Analyzing Call Center Performance. In: Orchard, B., Yang, C., Ali, M. (eds.) IEA/AIE 2004. LNCS (LNAI), vol. 3029, pp. 1092–1101. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  22. Ramadas, M., Ostermann, S., Tjaden, B.C.: Detecting anomalous network traffic with self-organizing maps. In: Vigna, G., Kruegel, C., Jonsson, E. (eds.) RAID 2003. LNCS, vol. 2820, pp. 36–54. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  23. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Information Processing and Management 24(5), 513–523 (1988)

    Article  Google Scholar 

  24. Viscovery®. SOMine 5.0. Copyright©1998-2007 by Viscovery Software GmbH, http://www.viscovery.net (cited February 1, 2010)

  25. Yang, M.Y.: Extending the Kohonen self-organizing map networks for clustering analysis. Computational Statistics & Data Analysis 38, 161–180 (2001)

    Article  MathSciNet  Google Scholar 

  26. Ypma, A., Duin, R.P.W.: Novelty detection using self-organizing maps. Progress in Connectionist Based Information Systems 2, 1322–1325 (1998)

    Google Scholar 

  27. NVIDIA, Cuda c programming guide (August 2010), http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/NVIDIA_CUDA_C_ProgrammingGuide_3.1.pdf

  28. Hager, G., Zeiser, T., Wellein, G.: Data access optimizations for highly threaded multi-core cpus with multiple memory controllers. In: IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2008, pp. 1–7 (2008), doi:10.1109/IPDPS.2008.4536341

    Google Scholar 

  29. Andrecut, M.: Parallel gpu implementation of iterative pca algorithms. Journal of Computational Biology 16(11), 1593–1599 (2009)

    Article  MathSciNet  Google Scholar 

  30. Preis, T., Virnau, P., Paul, W., Schneider, J.J.: Accelerated fluctuation analysis by graphic cards and complex pattern formation in financial markets. New Journal of Physics 11(9), 093024 (2009), http://stacks.iop.org/1367-2630/11/i=9/a=093024

    Google Scholar 

  31. Patnaik, D., Ponce, S.P., Cao, Y., Ramakrishnan, N.: Accelerator-oriented algorithm transformation for temporal data mining. In: IFIP International Conference on Network and Parallel Computing Workshops, pp. 93–100 (2009), doi: http://doi.ieeecomputersociety.org/10.1109/NPC.2009.26

  32. NVIDIA, Cuda zone (August 2010), http://www.nvidia.com/object/cuda_home_new.html

  33. Myklebust, G., Solheim, J.G., Steen, E.: Wavefront implementation of self organizing maps on renns. In: International Conference on Digital Signal Processing, Limassol, Cyprus, pp. 268–273 (1995)

    Google Scholar 

  34. Mann, R., Haykin, S.: A parallel implementation of Kohonen’s feature maps on the warp systolic computer. In: Proc. IJCNN-90-WASH-DC, Int. Joint Conf. on Neural Networks, vol. II, pp. 84–87. Lawrence Erlbaum, Hillsdale (1990)

    Google Scholar 

  35. Openshaw, S., Turton, I.: A parallel kohonen algorithm for the classification of large spatial datasets. Comput. Geosci. 22(9), 1019–1026 (1996), doi: http://dx.doi.org/10.1016/S0098-30049600040-4

  36. Wu, C.-H., Hodges, R.E., Wang, C.-J.: Parallelizing the self-organizing feature map on multiprocessor systems. Parallel Computing 17(6-7), 821–832 (1991), doi:10.1016/S0167-8191(05)80069-9, http://www.sciencedirect.com/science/article/B6V12-4GMBN2V-N/2/214aee0cc02fb79d05751b5ded84b784

  37. Nordström, T.: Designing parallel computers for self organizing maps. In: Fourth Swedish Workshop on Computer System Architecture (1992)

    Google Scholar 

  38. Valova, I., Szer, D., Gueorguieva, N., Buer, A.: A parallel growing architecture for self-organizing maps with unsupervised learning. Neurocomput. 68, 177–195 (2005), http://dx.doi.org/10.1016/j.neucom.2004.11.025

    Article  Google Scholar 

  39. Valova, I., MacLean, D., Beaton, D.: Identification of patterns via region-growing parallel som neural network. In: Fourth International Conference on Machine Learning and Applications, pp. 853–858 (2008), http://doi.ieeecomputersociety.org/10.1109/ICMLA.2008.50

  40. Weigang, L., da Silva, N.: A study of parallel neural networks. In: International Joint Conference on Neural Networks, IJCNN 1999, vol. 2, pp. 1113–1116 (1999), doi:10.1109/IJCNN.1999.831112

    Google Scholar 

  41. Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer (2000)

    Google Scholar 

  42. Flexer, A.: On the use of self-organizing maps for clustering and visualization, Intell. Intell. Data Anal. 5(5), 373–384 (2001)

    MATH  Google Scholar 

  43. Openmp: Api specification for parallel programming (2010), http://openmp.org/wp/

  44. Lee, S., Min, S.-J., Eigenmann, R.: Openmp to gpgpu: a compiler framework for automatic translation and optimization. In: PPoPP 2009: Proceedings of the 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 101–110. ACM, New York (2009), doi: http://dx.doi.org/http://doi.acm.org/10.1145/1504176.1504194

    Google Scholar 

  45. Kirk, D., Mei Hwu, W.: Programming Massively Parallel Processors: A Hands-on Approach. Morgan Kaufmann (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Snášel, V., Klement, P., Gajdoš, P., Abraham, A. (2013). Self Organising Maps on Compute Unified Device Architecture for the Performance Monitoring of Emergency Call-Taking Centre. In: Gavrilova, M.L., Tan, C.J.K., Abraham, A. (eds) Transactions on Computational Science XXI. Lecture Notes in Computer Science, vol 8160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45318-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45318-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45317-5

  • Online ISBN: 978-3-642-45318-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics