Abstract
The collaborative emergency call-taking information system in the Czech Republic forms a network of cooperating emergency call centers processing emergency calls to the European 112 emergency number. Large amounts of various incident records are stored in the databases. The data can be used for mining spatial and temporal anomalies, as well as for the monitoring and analysis of the performance of the emergency call- taking system. In this paper, we describe a method for knowledge discovery and visualization targeted at the performance analysis of the system with respect to the organization of the emergency call-taking information system and its data characteristics. The method is based on the Kohonen Self-Organising Map (SOM) algorithm and its extension, the Growing Grid algorithm. To handle the massive data, the growing grid algorithm is implemented in a parallel environment using compute unified device architecture. Experimental results illustrate that the proposed method is very efficient.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bača, R., Krátký, M., Snášel, V.: Power Outage Data Analysis via SOM Neural Networks. In: Proceedings of ELNET 2008, Ostrava, pp. 87–98 (2008)
Bersini, H., Varela, F.J.: Hints for Adaptive Problem Solving Gleaned from Immune Networks. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 343–354. Springer, Heidelberg (1991)
Brockett, P.L., Xia, X., Derrig, R.A.: Using Kohonen’s Self-organizing Feature Map to Uncover Automobile Bodily Injury Claims Fraud. Journal of Risk and Insurance 65(2), 245–274 (1998)
Dittenbach, M., Merkl, D., Rauber, A.: Organizing and Exploring High-Dimensional Data with the Growing Hierarchical Self-organizing Map. In: Proceedings of the 1st International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2002), pp. 626–630 (2002)
Farmer, J.D., Packard, N.H., Perelson, A.S.: The immune system, adaptation, and machine learning. Physica D 22, 187–204; Reprinted in: Farmer, D., Lapedes, A., Packard, N., Wendroff, B. (eds.): Evolution, Games and Learning, pp. 187–204. North-Holland, Amsterdam (1986)
Fritzke, B.: A Growing Neural Gas Network Learns Topologies. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) Advances in Neural Information Processing Systems, vol. 7, pp. 625–632. MIT Press, Cambridge (1995)
Fritzke, B.: Growing Grid – A self-organizing network with constant neighbourhood range and adaptation strength. Neural Processing Letters 2(5), 9–13 (1995)
Gan, G., Ma, C., Wu, J.: Data Clustering: Theory, Algorithms and Applications. SIAM, Philadelphia (2007)
Gonzalez, F., Dasgupta, D.: Neuro-Immune and Self-Organizing Map Approaches to Anomaly Detection: A Comparison. In: Proceedings of the 1st International Conference on Artificial Immune Systems (ICARIS), Canterbury, UK, pp. 203–211 (September 2002)
Grosan, C., Abraham, A., Hassanien, A.: Designing Resilient Networks Using Multicriteria Metaheuristics. Telecommunication Systems: Modelling, Analysis, Design and Management 40(1), 75–88 (2008)
Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice-Hall, Upper Saddle (1999)
Jolliffe, I.: Principal component analysis, 2nd edn. Springer, Berlin (2002)
Kaski, S., Lagus, K.: Comparing Self-Organizing Maps. In: Vorbrüggen, J.C., von Seelen, W., Sendhoff, B. (eds.) ICANN 1996. LNCS, vol. 1112, pp. 809–814. Springer, Heidelberg (1996)
Klement, P., Snášel, V.: Anomaly Detection in Emergency Call Data – the First Step to Intelligent Emergency Call System Management. In: Proceedings of the 1st International Conference on Intelligent Networking and Collaborative Systems (INCoS 2009), Barcelona, Spain, pp. 226–232 (November 2009)
Klement, P., Snášel, V.: SOM neural network - a piece of intelligence in disaster management. In: Nature & Biologically Inspired Computing, NaBIC 2009, pp. 872–877 (2009)
Kohonen, T.: Self-Organizing Maps. Springer, Berlin (1995)
Konak, A., Bartolacci, M.R.: Designing survivable resilient networks: a stochastic hybrid genetic algorithm approach, Omega; Special Issue on Telecommunications Applications 35(6), 645–658 (2007)
Lichodzijewski, P., Zincir-Heywood, A.N., Heywood, M.I.: Dynamic Intrusion Detection Using Self-Organizing Maps. In: The 14th Annual Canadian Information Technology Security Symposium, CITSS (2002)
Lloyd, S.P.: Least Squares Quantization in PCM. IEEE Transactions on Information Theory 28(2), 129–137 (1982)
Mitra, S., Pal, S.K.: Self-organizing neural network as a fuzzy classifier. IEEE Trans. Systems, Man, Cybernetics 24(3), 385–399 (1994)
Paprzycki, M., Abraham, A., Guo, R., Mukkamala, S.: Data Mining Approach for Analyzing Call Center Performance. In: Orchard, B., Yang, C., Ali, M. (eds.) IEA/AIE 2004. LNCS (LNAI), vol. 3029, pp. 1092–1101. Springer, Heidelberg (2004)
Ramadas, M., Ostermann, S., Tjaden, B.C.: Detecting anomalous network traffic with self-organizing maps. In: Vigna, G., Kruegel, C., Jonsson, E. (eds.) RAID 2003. LNCS, vol. 2820, pp. 36–54. Springer, Heidelberg (2003)
Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Information Processing and Management 24(5), 513–523 (1988)
Viscovery®. SOMine 5.0. Copyright©1998-2007 by Viscovery Software GmbH, http://www.viscovery.net (cited February 1, 2010)
Yang, M.Y.: Extending the Kohonen self-organizing map networks for clustering analysis. Computational Statistics & Data Analysis 38, 161–180 (2001)
Ypma, A., Duin, R.P.W.: Novelty detection using self-organizing maps. Progress in Connectionist Based Information Systems 2, 1322–1325 (1998)
NVIDIA, Cuda c programming guide (August 2010), http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/NVIDIA_CUDA_C_ProgrammingGuide_3.1.pdf
Hager, G., Zeiser, T., Wellein, G.: Data access optimizations for highly threaded multi-core cpus with multiple memory controllers. In: IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2008, pp. 1–7 (2008), doi:10.1109/IPDPS.2008.4536341
Andrecut, M.: Parallel gpu implementation of iterative pca algorithms. Journal of Computational Biology 16(11), 1593–1599 (2009)
Preis, T., Virnau, P., Paul, W., Schneider, J.J.: Accelerated fluctuation analysis by graphic cards and complex pattern formation in financial markets. New Journal of Physics 11(9), 093024 (2009), http://stacks.iop.org/1367-2630/11/i=9/a=093024
Patnaik, D., Ponce, S.P., Cao, Y., Ramakrishnan, N.: Accelerator-oriented algorithm transformation for temporal data mining. In: IFIP International Conference on Network and Parallel Computing Workshops, pp. 93–100 (2009), doi: http://doi.ieeecomputersociety.org/10.1109/NPC.2009.26
NVIDIA, Cuda zone (August 2010), http://www.nvidia.com/object/cuda_home_new.html
Myklebust, G., Solheim, J.G., Steen, E.: Wavefront implementation of self organizing maps on renns. In: International Conference on Digital Signal Processing, Limassol, Cyprus, pp. 268–273 (1995)
Mann, R., Haykin, S.: A parallel implementation of Kohonen’s feature maps on the warp systolic computer. In: Proc. IJCNN-90-WASH-DC, Int. Joint Conf. on Neural Networks, vol. II, pp. 84–87. Lawrence Erlbaum, Hillsdale (1990)
Openshaw, S., Turton, I.: A parallel kohonen algorithm for the classification of large spatial datasets. Comput. Geosci. 22(9), 1019–1026 (1996), doi: http://dx.doi.org/10.1016/S0098-30049600040-4
Wu, C.-H., Hodges, R.E., Wang, C.-J.: Parallelizing the self-organizing feature map on multiprocessor systems. Parallel Computing 17(6-7), 821–832 (1991), doi:10.1016/S0167-8191(05)80069-9, http://www.sciencedirect.com/science/article/B6V12-4GMBN2V-N/2/214aee0cc02fb79d05751b5ded84b784
Nordström, T.: Designing parallel computers for self organizing maps. In: Fourth Swedish Workshop on Computer System Architecture (1992)
Valova, I., Szer, D., Gueorguieva, N., Buer, A.: A parallel growing architecture for self-organizing maps with unsupervised learning. Neurocomput. 68, 177–195 (2005), http://dx.doi.org/10.1016/j.neucom.2004.11.025
Valova, I., MacLean, D., Beaton, D.: Identification of patterns via region-growing parallel som neural network. In: Fourth International Conference on Machine Learning and Applications, pp. 853–858 (2008), http://doi.ieeecomputersociety.org/10.1109/ICMLA.2008.50
Weigang, L., da Silva, N.: A study of parallel neural networks. In: International Joint Conference on Neural Networks, IJCNN 1999, vol. 2, pp. 1113–1116 (1999), doi:10.1109/IJCNN.1999.831112
Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer (2000)
Flexer, A.: On the use of self-organizing maps for clustering and visualization, Intell. Intell. Data Anal. 5(5), 373–384 (2001)
Openmp: Api specification for parallel programming (2010), http://openmp.org/wp/
Lee, S., Min, S.-J., Eigenmann, R.: Openmp to gpgpu: a compiler framework for automatic translation and optimization. In: PPoPP 2009: Proceedings of the 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 101–110. ACM, New York (2009), doi: http://dx.doi.org/http://doi.acm.org/10.1145/1504176.1504194
Kirk, D., Mei Hwu, W.: Programming Massively Parallel Processors: A Hands-on Approach. Morgan Kaufmann (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Snášel, V., Klement, P., Gajdoš, P., Abraham, A. (2013). Self Organising Maps on Compute Unified Device Architecture for the Performance Monitoring of Emergency Call-Taking Centre. In: Gavrilova, M.L., Tan, C.J.K., Abraham, A. (eds) Transactions on Computational Science XXI. Lecture Notes in Computer Science, vol 8160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45318-2_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-45318-2_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-45317-5
Online ISBN: 978-3-642-45318-2
eBook Packages: Computer ScienceComputer Science (R0)