Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Recent Models and Solution Methodologies for Optimization Problems in Supply Chain Management Under Fuzziness

  • Chapter
  • First Online:
Supply Chain Management Under Fuzziness

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 313))

  • 1999 Accesses

Abstract

Supply chain (SC) involves collaborating with business partners which uniquely specialize on only a few key strategic activities. The network structures formed in SC’s have emerged in the last decade with the accelerated developments in globalization, outsourcing and information technology. The complex network structures have introduced novel problems to both industry and academia while traditional complications are yet investigated. The intensification points of SC problems are mainly configuration of distribution networks, forming distribution strategies, trade-off analyses, managing inventory and cash-flow. One of the main challenges in modeling and solving these problems is to deal with the uncertainties involved in the complex nature of SC. Demand has been the main uncertain aspect of the problems of the related literature followed by internal parameters, supplier related parameters, environmental parameters and price. The uncertainty issues have been commonly dealt with fuzzy approaches in the literature. Fuzzy approaches become beneficial under uncertainties such as the absence of data, use of qualitative data or the need for subjective judgments. Hence, fuzzy techniques in SC optimization problems are vastly implemented in the literature. The purpose of this study is basically to summarize the fuzzy techniques employed for SC optimization models, their past applications, solutions algorithms and offer directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Aliev, R.A., Fazlollahi, B., Guirimov, B.G., Aliev, R.R.: Fuzzy-genetic approach to aggregate production–distribution planning in supply chain management. Inf Sci 177(20), 4241–4255 (2007)

    Article  MATH  Google Scholar 

  • Arikan, F.: A fuzzy solution approach for multi objective supplier selection. Expert Sys Appl 40(3), 947–952 (2013)

    Article  Google Scholar 

  • Bilgen, B.: Application of fuzzy mathematical programming approach to the production allocation and distribution supply chain network problem. Expert Syst Appl 37(6), 4488–4495 (2010)

    Article  Google Scholar 

  • Björk, K.-M.: A multi-item fuzzy economic production quantity problem with a finite production rate. Int J Prod Econ 135(2), 702–707 (2012)

    Google Scholar 

  • Chandran, S., Kandaswamy, G.: A fuzzy approach to transport optimization problem. Optim Eng 1–16 (2012). doi:10.1007/s11081-012-9209-6

  • Charnes, A., Cooper, W.W.: Chance constrained programming. Manag Sci 6, 73–79 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  • Chen, C.-L., Lee, W.-C.: Multi-objective optimization of multi-echelon supply chain networks with uncertain product demands and prices. Comput Chem Eng 28(6–7), 1131–1144 (2004)

    Article  Google Scholar 

  • Chen, C.-L., Yuan, T.-W., Lee, W.-C.: Multi-criteria fuzzy optimization for locating warehouses and distribution centers in a supply chain network. Chin J Chem Eng 38(5–6), 393–407 (2007)

    Article  Google Scholar 

  • Friedman, N., Halpern, J.Y.: Plausibility measures: a user’s guide. In: Proceedings of 11th Conference on Uncertainty in Artificial Intelligence (UAI 95) (1995)

    Google Scholar 

  • Georgescu, I., Kinnunen, J.: Credibility measures in portfolio analysis: from possibilistic to probabilistic models. J Appl Oper Res 3(2), 91–102 (2011)

    Google Scholar 

  • Ghatee, M., Hashemi, S.M.: Application of fuzzy minimum cost flow problems to network design under uncertainty. Fuzzy Set Syst 460(22), 3263–3289 (2009)

    Article  MathSciNet  Google Scholar 

  • Gong, Y., Huang, D., Wang, W., Peng, Y.-G.: A fuzzy chance constraint programming approach for location-allocation problem under uncertainty in a closed-loop supply chain. In: International Joint Conference on Computational Sciences and Optimization, pp. 836–840 (2009)

    Google Scholar 

  • Gumus, A.T., Guneri, A.F., Keles, S.: Supply chain network design Ysing an integrated neuro-fuzzy and MILP approach: a comparative design study. Expert Syst Appl 36(10), 12570–12577 (2009)

    Article  Google Scholar 

  • Handfield, R., Warsing, D., Wu, X.: Inventory policies in a fuzzy uncertain supply chain environment. Eur J Oper Res 197(2), 609–619 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Huang, X.: Fuzzy chance-constrained portfolio selection. Appl Math Comput 177(2), 500–507 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Iris, C., Serdar-Asan, S.: A review of genetic algorithm applications in supply chain network design. In: Kahraman, C. (ed.) Computational Intelligence Systems in Industrial Engineering, pp. 203–230. Atlantis Press, Paris (2012)

    Chapter  Google Scholar 

  • Jazemi, R., Ghodsypour, S.H., Gheidar-Kheljani, J.: Considering supply chain benefit in supplier selection problem by using information sharing benefits. IEEE Trans Ind Inform 7(3), 517–526 (2011)

    Article  Google Scholar 

  • Jing-min, W., Dan, Z., Li, T.: A simulation-based robust optimization model for supply chain network design. In: ICNC’08, Fourth International Conference on Natural Computation, pp. 515–519 (2008)

    Google Scholar 

  • Kabak, Ö., Ülengin, F.: Possibilistic linear-programming approach for supply chain networking decisions. Eur J Oper Res 209(3), 253–264 (2011)

    Article  MATH  Google Scholar 

  • Klir, G.J., Yuan, B.: Fuzzy sets and fuzzy logic: theory and applications. Prentice Hall, Upper Saddle River (1995)

    MATH  Google Scholar 

  • Kubat, C., Yuce, B.: A hybrid intelligent approach for supply chain management system. J Intel Manuf 23(4), 1237–1244 (2012)

    Article  Google Scholar 

  • Lambert, D.M., Stock, J.R., Ellram, L.M.: Fundamentals of logistics management. Irwin/McGraw-Hill Publishing, Boston (1998)

    Google Scholar 

  • Lau, H.C.W., Chan, T.M., Tsui, W.T., Chan, F.T.S., Ho, G.T.S., Choy, K.L.: A fuzzy guided multi-objective evolutionary algorithm model for solving transportation problem. Expert Syst Appl 36(4), 8255–8268 (2009)

    Article  Google Scholar 

  • Li, X., Ralescu, D.: Credibility measure of fuzzy sets and applications. Int J Adv Intel Paradigms 1(3), 241–250 (2009)

    Article  Google Scholar 

  • Liang, T.-F.: Integrated manufacturing/distribution planning decisions with multiple imprecise goals in an uncertain environment. Qual Quant 46(1), 137–153 (2012)

    Article  Google Scholar 

  • Liu, D., Chen, Y., Mao, H., Zhang, Z., Gu, X.: Optimization of the supply chain production planning programming under hybrid uncertainties. In: International Conference on Intelligent Computation Technology and Automation (ICICTA), pp. 1235–1239 (2008)

    Google Scholar 

  • Luhandjula, M.K.: Mathematical programming: theory, applications and extension. J Uncertain Syst 1(2), 124–136 (2007)

    Google Scholar 

  • Mahnam, M., Yadollahpour, M.R., Famil-Dardashti, V., Hejazi, S.R.: Supply chain modeling in uncertain environment with bi-objective approach. Comput Ind Eng 56(4), 1535–1544 (2009)

    Article  Google Scholar 

  • Makkar, S., Jha, P.C., Arora, N.: Single-source, single-destination coordination of EOQ Model for perishable products with quantity discounts incorporating partial/full truckload policy under fuzzy environment. In: Deep, K., Nagar, A., Pant, M., Bansal, J. (eds.) Proceedings of the International Conference on Soft Computing for Problem Solving (SocProS 2011), pp. 971–982 (2012)

    Google Scholar 

  • Melo, M.T., Nickel, S., Saldanha-da-Gama, F.: Facility location and supply chain management: a review. Eur J Oper Res 196(2), 401–412 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Mentzer, J.T., DeWitt, W., Keebler, J.S., Min, S., Nix, N.W., Smith, C.D., Zacharia, Z.G.: Defining supply chain management. J Bus Logist 22(2), 1–25 (2001)

    Article  Google Scholar 

  • Miller, S., John, R.: An interval type-2 fuzzy multiple echelon supply chain model. Knowl Based Syst 23(4), 363–368 (2010)

    Article  Google Scholar 

  • Mitra, K., Gudi, R.D., Patwardhan, S.C., Sardar, G.: Towards resilient supply chains: uncertainty analysis using fuzzy mathematical programming. Chem Eng Res Des 87(7), 967–981 (2009)

    Article  Google Scholar 

  • Mula, J., Poler, R., García-Sabater, J.P., Lario, F.C.: Models for production planning under uncertainty: a review. Int J Prod Econ 103(1), 271–285 (2006)

    Article  Google Scholar 

  • Mula, J., Peidro, D., Poler, R.: The effectiveness of a fuzzy mathematical programming approach for supply chain production planning with fuzzy demand. Int J Prod Econ 128(1), 136–143 (2010)

    Article  Google Scholar 

  • Nepal, B., Monplaisir, L., Famuyiwa, O.: Matching product architecture with supply chain design. Eur J Oper Res 216(2), 315–325 (2012)

    Article  MathSciNet  Google Scholar 

  • Özkır, V., Başlıgil, H.: Multi-objective optimization of closed-loop supply chains in uncertain environment. J Clean Prod 41, 114–125 (2013)

    Article  Google Scholar 

  • Paksoy, T., Yapici-Pehlivan, N.: A fuzzy linear programming model for the optimization of multi-stage supply chain networks with triangular and trapezoidal membership functions. J Franklin Inst 349(1), 93–109 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Paksoy, T., Yapici Pehlivan, N., Özceylan, E.: Application of fuzzy optimization to a supply chain network design: a case study of an edible vegetable oils manufacturer. Appl Math Model 36(6), 2762–2776 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Peidro, D., Mula, J., Poler, R., Lario, F.-C.: Quantitative models for supply chain planning under uncertainty: a review. Int J Adv Manuf Tech 43(3–4), 400–420 (2009)

    Article  Google Scholar 

  • Petrovic, D., Xie, Y., Burnham, K., Petrovic, R.: Coordinated control of distribution supply chains in the presence of fuzzy customer demand. Eur J Oper Res 185(19), 146–158 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Pinto-Varela, T., Barbosa-Póvoa, A.P.F.D., Novais, A.Q.: Bi-objective optimization approach to the design and planning of supply chains: economic versus environmental performances. Comput Chem Eng 35(8), 1454–1468 (2011)

    Article  Google Scholar 

  • Pishvaee, M.S., Razmi, J.: Environmental supply chain network design using multi-objective fuzzy mathematical programming. Appl Math Model 36(8), 3433–3446 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Pishvaee, M.S., Torabi, S.A.: A possibilistic programming approach for closed-loop supply chain network design under uncertainty. Fuzzy Set Syst 161(20), 2668–2683 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Qin, Z., Ji, X.: Logistics network design for product recovery in fuzzy environment. Eur J Oper Res 202(2), 479–490 (2010)

    Article  MATH  Google Scholar 

  • Rao, S.S.: Engineering Optimization: Theory and Practice. Wiley, New York (2009)

    Book  Google Scholar 

  • Ross, T.J.: Fuzzy logic with engineering applications, 3rd edn. Wiley, West Sussex (2002)

    Google Scholar 

  • Ross, T.J., Sellos, K.F., Booker, J.M.: Fuzzy logic and probability applications: bridging the gap. In: Ross, T.J., Booker, J.M., Parkinson, W.J. (eds.) ASA-SIAM series on statistics and applied probability. American Statistical Association, Alexandria and The Society for Industrial and Applied Mathematics, Philadelphia (2002)

    Google Scholar 

  • Selim, H., Ozkarahan, I.: Application of fuzzy multi-objective programming approach to supply chain distribution network design problem. In: Gelbukh, A., Reyes-García, C. (eds.) Advances in Artificial Intelligence, pp. 415–425. MICAI, Mexico (2006)

    Google Scholar 

  • Selim, H., Ozkarahan, I.: A supply chain distribution network design model: an interactive fuzzy goal programming-based solution approach. Int J Adv Manuf Tech 36(3–4), 401–418 (2008)

    Article  Google Scholar 

  • Türkşen, I.B.: Belief, plausibility, and probability measures on interval-valued type-2 fuzzy sets. Int J Intel Syst 19(7), 681–699 (2004)

    Article  MATH  Google Scholar 

  • Vahdani, B., Tavakkoli-Moghaddam, R., Modarres, M., Baboli, A.: Reliable design of a forward/reverse logistics network under uncertainty: a robust-M/M/C queuing model. Transport Res E-Log 48(6), 1152–1168 (2012)

    Article  Google Scholar 

  • Wang, Z., Klir, G.J.: Fuzzy measure theory. Springer, New York (1992)

    Book  MATH  Google Scholar 

  • Wang, J., Shu, Y.-F.: A possibilistic decision model for new product supply chain design. Eur J Oper Res 177(2), 1044–1061 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Wong, J.-T.: The distribution processing and replenishment policy of the supply chain under asymmetric information and deterioration: insight into the information value. Expert Syst Appl 37(3), 2347–2353 (2010)

    Article  Google Scholar 

  • Xie, Y., Petrovic, D., Burnham, K.: A heuristic procedure for the two-level control of serial supply chains under fuzzy customer demand. Int J Prod Econ 102(1), 37–50 (2006)

    Article  Google Scholar 

  • Xu, R., Zhai, X.: Optimal models for single-period supply chain problems with fuzzy demand. Inf Sci 178(17), 3374–3381 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Xu, R., Zhai, X.: Analysis of supply chain coordination under fuzzy demand in a two-stage supply chain. Appl Math Model 34(1), 129–139 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Xu, J., Liu, Q., Wang, R.: A class of multi-objective supply chain networks optimal model under random fuzzy environment and its application to the industry of chinese liquor. Inf Sci 178(8), 2022–2043 (2008)

    Article  MATH  Google Scholar 

  • Xu, J., He, Y., Gen, M.: A class of random fuzzy programming and its application to supply chain design. Comput Ind Eng 56(3), 937–950 (2009)

    Article  Google Scholar 

  • Yuansheng, H., Zilong, Q., Qingchao, L.: Supply chain network design based on fuzzy neural network and PSO. In: IEEE International Conference on Automation and Logistics, 2008, ICAL 2008, pp. 2189–2193 (2008)

    Google Scholar 

  • Yugang, L., Guang, H.: A planning model for distribution network design based on fuzzy multi-objective lattice-order decision. Syst Eng 7, 271–280 (2006)

    Google Scholar 

  • Zadeh, L.A.: Fuzzy sets. Inf Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  • Zhao, R., Tang, W.: Redundancy Optimization Problems with Uncertain Lifetimes. In: Levitin, G. (ed.) Computational Intelligence in Reliability Engineering, pp. 329–374. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  • Zheng, Y.-J., Ling, H.-F.: Emergency transportation planning in disaster relief supply chain management: a cooperative fuzzy optimization approach. Soft Comput 17(7), 1301–1314 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seda Yanık Uğurlu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Uğurlu, S.Y., Altay, A. (2014). Recent Models and Solution Methodologies for Optimization Problems in Supply Chain Management Under Fuzziness. In: Kahraman, C., Öztayşi, B. (eds) Supply Chain Management Under Fuzziness. Studies in Fuzziness and Soft Computing, vol 313. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53939-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53939-8_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53938-1

  • Online ISBN: 978-3-642-53939-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics