Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Static Analysis of Programs with Imprecise Probabilistic Inputs

  • Conference paper
Verified Software: Theories, Tools, Experiments (VSTTE 2013)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8164))

  • 722 Accesses

Abstract

Having a precise yet sound abstraction of the inputs of numerical programs is important to analyze their behavior. For many programs, these inputs are probabilistic, but the actual distribution used is only partially known. We present a static analysis framework for reasoning about programs with inputs given as imprecise probabilities: we define a collecting semantics based on the notion of previsions and an abstract semantics based on an extension of Dempster-Shafer structures. We prove the correctness of our approach and show on some realistic examples the kind of invariants we are able to infer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arce, G.: Nonlinear Signal Processing: A Statistical Approach. Wiley (2005)

    Google Scholar 

  2. Auer, E., Luther, W., Rebner, G., Limbourg, P.: A verified matlab toolbox for the dempster-shafer theory. In: Workshop on the Theory of Belief Functions (2010)

    Google Scholar 

  3. Berleant, D., Goodman-Strauss, C.: Bounding the results of arithmetic operations on random variables of unknown dependency using intervals. Reliable Computing 4(2), 147–165 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berleant, D., Xie, L., Zhang, J.: Statool: A tool for distribution envelope determination (denv), an interval-based algorithm for arithmetic on random variables. Reliable Computing 9, 91–108 (2003)

    Article  MATH  Google Scholar 

  5. Bouissou, O., Goubault, E., Goubault-Larrecq, J., Putot, S.: A generalization of p-boxes to affine arithmetic. Computing, 1–13 (2011), 10.1007/s00607-011-0182-8

    Google Scholar 

  6. Bouissou, O., Goubault, E., Putot, S., Tekkal, K., Vedrine, F.: Hybridfluctuat: A static analyzer of numerical programs within a continuous environment. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 620–626. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Busaba, J., Suwan, S., Kosheleva, O.: A faster algorithm for computing the sum of p-boxes. Journal of Uncertain Systems 4(4) (2010)

    Google Scholar 

  8. Choquet, G.: Theory of capacities. Annales de l’Institut Fourier 5, 131–295 (1953)

    Article  MathSciNet  Google Scholar 

  9. Comba, J.L.D., Stolfi, J.: Affine arithmetic and its applications to computer graphics. In: SEBGRAPI 1993 (1993)

    Google Scholar 

  10. Cousot, P., Monerau, M.: Probabilistic abstract interpretation. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 169–193. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Destercke, S., Dubois, D., Chojnacki, E.: Unifying practical uncertainty representations - I: Generalized p-boxes. J. of Approximate Reasoning 49(3) (2008)

    Google Scholar 

  12. Destercke, S., Dubois, D., Chojnacki, E.: Unifying practical uncertainty representations. II: Clouds. Intl. J. of Approximate Reasoning 49(3) (2008)

    Google Scholar 

  13. Enszer, J.A., Lin, Y., Ferson, S., Corliss, G.F., Stadtherr, M.A.: Probability bounds analysis for nonlinear dynamic process models. AIChE Journal 57(2) (2011)

    Google Scholar 

  14. Feller, W.: An Introduction to Probability Theory and Its Applications. Wiley (1968)

    Google Scholar 

  15. Feret, J.: Static analysis of digital filters. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 33–48. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Ferson, S.: RAMAS Risk Calc 4.0 Software: Risk Assessment with Uncertain Numbers. Lewis Publishers (2002)

    Google Scholar 

  17. Ferson, S., Kreinovich, V., Ginzburg, L., Myers, D., Sentz, K.: Constructing probability boxes and Dempster-Shafer structures. Tech. Rep. SAND2002-4015, Sandia National Laboratories (2003)

    Google Scholar 

  18. Ferson, S.: What Monte-Carlo methods cannot do. Human and Ecological Risk Assessment 2, 990–1007 (1996)

    Article  Google Scholar 

  19. Fuchs, M., Neumaier, A.: Potential based clouds in robust design optimization. J. Stat. Theory Practice 3, 225–238 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ghorbal, K., Goubault, E., Putot, S.: A logical product approach to zonotope intersection. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 212–226. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Goubault, E., Putot, S.: A zonotopic framework for functional abstractions. CoRR abs/0910.1763 (2009)

    Google Scholar 

  22. Goubault, E., Putot, S.: Static analysis of finite precision computations. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 232–247. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Goubault-Larrecq, J.: Continuous capacities on continuous state spaces. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 764–776. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Goubault-Larrecq, J.: Continuous previsions. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 542–557. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  25. Goubault-Larrecq, J.: Prevision domains and convex powercones. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 318–333. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  26. Goubault-Larrecq, J., Keimel, K.: Choquet-Kendall-Matheron theorems for non-Hausdorff spaces. MSCS 21(3), 511–561 (2011)

    MATH  MathSciNet  Google Scholar 

  27. Kwiatkowska, M., Norman, G., Parker, D.: Prism 4.0: Verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  28. Lin, Y., Stadtherr, M.A.: Validated solution of initial value problems for odes with interval parameters. In: NSF Workshop on Reliable Engineering Computing (2006)

    Google Scholar 

  29. Mancini, R., Carter, B.: Op Amps for Everyone. Electronics & Electrical (2009)

    Google Scholar 

  30. McIver, A., Morgan, C.: Demonic, angelic and unbounded probabilistic choices in sequential programs. Acta Informatica 37(4/5), 329–354 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  31. Mislove, M.W.: Nondeterminism and probabilistic choice: Obeying the laws. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 350–364. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  32. Monniaux, D.: Abstract interpretation of probabilistic semantics. In: Palsberg, J. (ed.) SAS 2000. LNCS, vol. 1824, pp. 322–340. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  33. Neumaier, A.: Clouds, fuzzy sets and probability intervals. Reliable Computing (2004)

    Google Scholar 

  34. Rump, S.: INTLAB - INTerval LABoratory. In: Csendes, T. (ed.) Developments in Reliable Computing, pp. 77–104. Kluwer Academic Publishers (1999)

    Google Scholar 

  35. Sankaranarayanan, S., Chakarov, A., Gulwani, S.: Static analysis for probabilistic programs: inferring whole program properties from finitely many paths. In: Boehm, H.J., Flanagan, C. (eds.) PLDI, pp. 447–458. ACM (2013)

    Google Scholar 

  36. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)

    Google Scholar 

  37. Sun, J., Huang, Y., Li, J., Wang, J.M.: Chebyshev affine arithmetic based parametric yield prediction under limited descriptions of uncertainty. In: ASP-DAC 2008, pp. 531–536. IEEE Computer Society Press (2008)

    Google Scholar 

  38. Terejanu, G., Singla, P., Singh, T., Scott, P.D.: Approximate interval method for epistemic uncertainty propagation using polynomial chaos and evidence theory. In: 2010 American Control Conference, Baltimore, Maryland (2010)

    Google Scholar 

  39. Tix, R.: Continuous D-Cones: Convexity and Powerdomain Constructions. Ph.D. thesis, Technische Universität Darmstadt (1999)

    Google Scholar 

  40. Tix, R., Keimel, K., Plotkin, G.: Semantic domains for combining probability and non-determinism. ENTCS 129, 1–104 (2005)

    MathSciNet  Google Scholar 

  41. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman Hall (1991)

    Google Scholar 

  42. Williamson, R.C., Downs, T.: Probabilistic arithmetic I: Numerical methods for calculating convolutions and dependency bounds. J. Approximate Reasoning (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Adje, A., Bouissou, O., Goubault-Larrecq, J., Goubault, E., Putot, S. (2014). Static Analysis of Programs with Imprecise Probabilistic Inputs. In: Cohen, E., Rybalchenko, A. (eds) Verified Software: Theories, Tools, Experiments. VSTTE 2013. Lecture Notes in Computer Science, vol 8164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54108-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54108-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54107-0

  • Online ISBN: 978-3-642-54108-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics