Abstract
Having a precise yet sound abstraction of the inputs of numerical programs is important to analyze their behavior. For many programs, these inputs are probabilistic, but the actual distribution used is only partially known. We present a static analysis framework for reasoning about programs with inputs given as imprecise probabilities: we define a collecting semantics based on the notion of previsions and an abstract semantics based on an extension of Dempster-Shafer structures. We prove the correctness of our approach and show on some realistic examples the kind of invariants we are able to infer.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arce, G.: Nonlinear Signal Processing: A Statistical Approach. Wiley (2005)
Auer, E., Luther, W., Rebner, G., Limbourg, P.: A verified matlab toolbox for the dempster-shafer theory. In: Workshop on the Theory of Belief Functions (2010)
Berleant, D., Goodman-Strauss, C.: Bounding the results of arithmetic operations on random variables of unknown dependency using intervals. Reliable Computing 4(2), 147–165 (1998)
Berleant, D., Xie, L., Zhang, J.: Statool: A tool for distribution envelope determination (denv), an interval-based algorithm for arithmetic on random variables. Reliable Computing 9, 91–108 (2003)
Bouissou, O., Goubault, E., Goubault-Larrecq, J., Putot, S.: A generalization of p-boxes to affine arithmetic. Computing, 1–13 (2011), 10.1007/s00607-011-0182-8
Bouissou, O., Goubault, E., Putot, S., Tekkal, K., Vedrine, F.: Hybridfluctuat: A static analyzer of numerical programs within a continuous environment. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 620–626. Springer, Heidelberg (2009)
Busaba, J., Suwan, S., Kosheleva, O.: A faster algorithm for computing the sum of p-boxes. Journal of Uncertain Systems 4(4) (2010)
Choquet, G.: Theory of capacities. Annales de l’Institut Fourier 5, 131–295 (1953)
Comba, J.L.D., Stolfi, J.: Affine arithmetic and its applications to computer graphics. In: SEBGRAPI 1993 (1993)
Cousot, P., Monerau, M.: Probabilistic abstract interpretation. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 169–193. Springer, Heidelberg (2012)
Destercke, S., Dubois, D., Chojnacki, E.: Unifying practical uncertainty representations - I: Generalized p-boxes. J. of Approximate Reasoning 49(3) (2008)
Destercke, S., Dubois, D., Chojnacki, E.: Unifying practical uncertainty representations. II: Clouds. Intl. J. of Approximate Reasoning 49(3) (2008)
Enszer, J.A., Lin, Y., Ferson, S., Corliss, G.F., Stadtherr, M.A.: Probability bounds analysis for nonlinear dynamic process models. AIChE Journal 57(2) (2011)
Feller, W.: An Introduction to Probability Theory and Its Applications. Wiley (1968)
Feret, J.: Static analysis of digital filters. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 33–48. Springer, Heidelberg (2004)
Ferson, S.: RAMAS Risk Calc 4.0 Software: Risk Assessment with Uncertain Numbers. Lewis Publishers (2002)
Ferson, S., Kreinovich, V., Ginzburg, L., Myers, D., Sentz, K.: Constructing probability boxes and Dempster-Shafer structures. Tech. Rep. SAND2002-4015, Sandia National Laboratories (2003)
Ferson, S.: What Monte-Carlo methods cannot do. Human and Ecological Risk Assessment 2, 990–1007 (1996)
Fuchs, M., Neumaier, A.: Potential based clouds in robust design optimization. J. Stat. Theory Practice 3, 225–238 (2009)
Ghorbal, K., Goubault, E., Putot, S.: A logical product approach to zonotope intersection. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 212–226. Springer, Heidelberg (2010)
Goubault, E., Putot, S.: A zonotopic framework for functional abstractions. CoRR abs/0910.1763 (2009)
Goubault, E., Putot, S.: Static analysis of finite precision computations. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 232–247. Springer, Heidelberg (2011)
Goubault-Larrecq, J.: Continuous capacities on continuous state spaces. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 764–776. Springer, Heidelberg (2007)
Goubault-Larrecq, J.: Continuous previsions. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 542–557. Springer, Heidelberg (2007)
Goubault-Larrecq, J.: Prevision domains and convex powercones. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 318–333. Springer, Heidelberg (2008)
Goubault-Larrecq, J., Keimel, K.: Choquet-Kendall-Matheron theorems for non-Hausdorff spaces. MSCS 21(3), 511–561 (2011)
Kwiatkowska, M., Norman, G., Parker, D.: Prism 4.0: Verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)
Lin, Y., Stadtherr, M.A.: Validated solution of initial value problems for odes with interval parameters. In: NSF Workshop on Reliable Engineering Computing (2006)
Mancini, R., Carter, B.: Op Amps for Everyone. Electronics & Electrical (2009)
McIver, A., Morgan, C.: Demonic, angelic and unbounded probabilistic choices in sequential programs. Acta Informatica 37(4/5), 329–354 (2001)
Mislove, M.W.: Nondeterminism and probabilistic choice: Obeying the laws. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 350–364. Springer, Heidelberg (2000)
Monniaux, D.: Abstract interpretation of probabilistic semantics. In: Palsberg, J. (ed.) SAS 2000. LNCS, vol. 1824, pp. 322–340. Springer, Heidelberg (2000)
Neumaier, A.: Clouds, fuzzy sets and probability intervals. Reliable Computing (2004)
Rump, S.: INTLAB - INTerval LABoratory. In: Csendes, T. (ed.) Developments in Reliable Computing, pp. 77–104. Kluwer Academic Publishers (1999)
Sankaranarayanan, S., Chakarov, A., Gulwani, S.: Static analysis for probabilistic programs: inferring whole program properties from finitely many paths. In: Boehm, H.J., Flanagan, C. (eds.) PLDI, pp. 447–458. ACM (2013)
Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)
Sun, J., Huang, Y., Li, J., Wang, J.M.: Chebyshev affine arithmetic based parametric yield prediction under limited descriptions of uncertainty. In: ASP-DAC 2008, pp. 531–536. IEEE Computer Society Press (2008)
Terejanu, G., Singla, P., Singh, T., Scott, P.D.: Approximate interval method for epistemic uncertainty propagation using polynomial chaos and evidence theory. In: 2010 American Control Conference, Baltimore, Maryland (2010)
Tix, R.: Continuous D-Cones: Convexity and Powerdomain Constructions. Ph.D. thesis, Technische Universität Darmstadt (1999)
Tix, R., Keimel, K., Plotkin, G.: Semantic domains for combining probability and non-determinism. ENTCS 129, 1–104 (2005)
Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman Hall (1991)
Williamson, R.C., Downs, T.: Probabilistic arithmetic I: Numerical methods for calculating convolutions and dependency bounds. J. Approximate Reasoning (1990)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Adje, A., Bouissou, O., Goubault-Larrecq, J., Goubault, E., Putot, S. (2014). Static Analysis of Programs with Imprecise Probabilistic Inputs. In: Cohen, E., Rybalchenko, A. (eds) Verified Software: Theories, Tools, Experiments. VSTTE 2013. Lecture Notes in Computer Science, vol 8164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54108-7_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-54108-7_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-54107-0
Online ISBN: 978-3-642-54108-7
eBook Packages: Computer ScienceComputer Science (R0)