Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Unified Statistical/Deterministic Deformable Model for LV Segmentation in Cardiac MRI

  • Conference paper
Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges (STACOM 2013)

Abstract

We propose a novel deformable model with statistical and deterministic components for LV segmentation in cardiac magnetic resonance (MR) cine images. The statistical deformable component learns a global reference model of the LV using Principal Component Analysis (PCA) while the deterministic deformable component consists of a finite-element deformable surface superimposed on the reference model. The statistical model accounts for most of the global variations in shape found in the training set while the deterministic skin accounts for the local deformations consistent with the detailed image features. Intensity gradient-based image forces are applied to the model to segment and reconstruct LV shape. We validate our model on the MICCAI Grand Challenge dataset using leave-one-out training. Comparing the automated segmentation to the manual segmentation yields a Mean Perpendicular Distance (MPD) of 3.65 mm and a Dice coefficient of 0.86.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Petitjean, C., Dacher, J.: A review of segmentation methods in short axis cardiac MR images. Medical Image Analysis 15, 169–184 (2011)

    Article  Google Scholar 

  2. McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis: A survey. Medical Image Analysis 1(2), 91–108 (1996)

    Article  Google Scholar 

  3. McInerney, T., Terzopoulos, D.: A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to 4-D image analysis. Comp. Med. Imag. Grap. 19(1), 69–83 (1995)

    Article  Google Scholar 

  4. Terzopoulos, D., Metaxas, D.: Dynamic 3D models with local and global deformations: Deformable superquadrics. IEEE Transactions on PAMI 13(7), 703–714 (1991)

    Article  Google Scholar 

  5. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models: Their training and application. Comp. Vis. Imag. Understanding 61, 38–59 (1995)

    Article  Google Scholar 

  6. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998)

    Google Scholar 

  7. Mitchell, S.C., Bosch, J.G., Lelieveldt, B.P.F., van der Geest, R.J., Reiber, J.H.C., Sonka, M.: 3D Active appearance models: Segmentation of cardiac MR and ultrasound images. IEEE Transactions on Medical Imaging 21(9), 1167–1178 (2002)

    Article  Google Scholar 

  8. Mitchell, S.C., Lelieveldt, B.P.F., van der Geest, R.J., Bosch, H.G., Reiber, J.H.C., Sonka, M.: Multistage hybrid Active Appearance Model matching: Segmentation of left and right ventricles in cardiac MR images. IEEE Transactions on Medical Imaging 20(5), 415–423 (2001)

    Article  Google Scholar 

  9. Zhang, H., Wahle, A., Johnson, R.K., Scholz, T.D., Sonka, M.: 4-D cardiac MR image analysis: Left and right ventricular morphology and function. IEEE Transactions on Medical Imaging 29(2), 350–364 (2010)

    Article  Google Scholar 

  10. Stegmann, M.B., Perdersen, D.: Bi-temporal 3D active appearance models with applications to unsupervised ejection fraction estimation. Proc. of SPIE Medical Imaging, 5747, 336–350 (2005)

    Google Scholar 

  11. Gopal, S., Otaki, Y., Arsanjani, R., Berman, D., Terzopoulos, D., Slomka, P.: Combining active appearance and deformable superquadric models for LV segmentation in cardiac MRI. Proc. SPIE Medical Imaging, 8669-15:1–8 (2013)

    Google Scholar 

  12. Radau, P., Lu, Y., Connelly, K., Paul, G., Dick, A.J., Wright, G.A.: Evaluation framework for algorithms segmenting short axis cardiac MRI. The MIDAS Journal - Cardiac MR Left Ventricle Segmentation Challenge (2009), http://hdl.handle.net/10380/3070

  13. Kaus, M., Von Berg, J., Weese, J., Niessen, W., Pekar, V.: Automated segmentation of the left ventricle in cardiac MRI. Medical Image Analysis 8(3), 245–254 (2004)

    Article  Google Scholar 

  14. Jolly, M.: Fully automatic left ventricle segmentation in cardiac cine MR images using registration and minimum surfaces. The MIDAS Journal—Cardiac MR Left Ventricle Segmentation Challenge (2009)

    Google Scholar 

  15. Huang, S., Liu, J., Lee, L., Venkatesh, S., Teo, L., Au, C., Nowinski, W.: Segmentation of the left ventricle from cine MR images using a comprehensive approach. The MIDAS Journal—Cardiac MR Left Ventricle Segmentation Challenge (2009)

    Google Scholar 

  16. Lu, Y., Radau, P., Connelly, K., Dick, A., Wright, G.: Automatic image-driven segmentation of left ventricle in cardiac cine MRI. The MIDAS Journal—Cardiac MR Left Ventricle Segmentation Challenge (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gopal, S., Terzopoulos, D. (2014). A Unified Statistical/Deterministic Deformable Model for LV Segmentation in Cardiac MRI. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. STACOM 2013. Lecture Notes in Computer Science, vol 8330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54268-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54268-8_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54267-1

  • Online ISBN: 978-3-642-54268-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics