Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Diffusion imaging is a noninvasive tool for probing the microstructure of fibrous nerve and muscle tissue. Higher-order tensors provide a powerful mathematical language to model and analyze the large and complex data that is generated by its modern variants such as High Angular Resolution Diffusion Imaging (HARDI) or Diffusional Kurtosis Imaging. This survey gives a careful introduction to the foundations of higher-order tensor algebra, and explains how some concepts from linear algebra generalize to the higher-order case. From the application side, it reviews a variety of distinct higher-order tensor models that arise in the context of diffusion imaging, such as higher-order diffusion tensors, q-ball or fiber Orientation Distribution Functions (ODFs), and fourth-order covariance and kurtosis tensors. By bridging the gap between mathematical foundations and application, it provides an introduction that is suitable for practitioners and applied mathematicians alike, and propels the field by stimulating further exchange between the two.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aganj, I., Lenglet, C., Sapiro, G., Yacoub, E., Ugurbil, K., Harel, N.: Reconstruction of the orientation distribution function in single- and multiple-shell q-ball imaging within constant solid angle. Magn. Reson. Med. 64(2), 554–566 (2010)

    Google Scholar 

  2. Anderson, A.W.: Measurement of fiber orientation distributions using high angular resolution diffusion imaging. Magn. Reson. Med. 54(5), 1194–1206 (2005)

    Article  Google Scholar 

  3. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Reson. Med. 56(2), 411–421 (2006)

    Article  Google Scholar 

  4. Astola, L., Florack, L.: Finsler geometry on higher order tensor fields and applications to high angular resolution diffusion imaging. In: Proceedings of the International Conference on Scale Space and Variational Methods in Computer Vision (SSVM), Voss, pp. 224–234. Springer (2009)

    Google Scholar 

  5. Astola, L., Florack, L.: Finsler geometry on higher order tensor fields and applications to high angular resolution diffusion imaging. Int. J. Comput Vis. 92, 325–336 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Astola, L., Fuster, A., Florack, L.: A Riemannian scalar measure for diffusion tensor images. Pattern Recognit 44, 1885–1891 (2011)

    Article  Google Scholar 

  7. Astola, L., Jalba, A., Balmashnova, E., Florack, L.: Finsler streamline tracking with single tensor orientation distribution function for high angular resolution diffusion imaging. J. Math. Imaging Vis. 41, 170–181 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Balmashnova, E., Fuster, A., Florack, L.: Decomposition of higher-order homogeneous tensors and applications to HARDI. In: Panagiotaki, E., O’Donnell, L., Schultz, T., Zhang, G.H. (eds.) Proceedings of the Computational Diffusion MRI (CDMRI), Nice, pp. 79–89 (2012)

    Google Scholar 

  9. Barmpoutis, A., Hwang, M.S., Howland, D., Forder, J.R., Vemuri, B.C.: Regularized positive-definite fourth order tensor field estimation from DW-MRI. NeuroImage 45(1, Suppl. 1), S153–S162 (2009)

    Google Scholar 

  10. Barmpoutis, A., Jian, B., Vemuri, B.C., Shepherd, T.M.: Symmetric positive 4th order tensors & their estimation from diffusion weighted MRI. In: Karssemeijer, N., Lelieveldt B. (eds.) IPMI, Kerkrade. LNCS, vol. 4584, pp. 308–319 (2007)

    Google Scholar 

  11. Barmpoutis, A., Vemuri, B.C.: Exponential tensors: a framework for efficient higher-order DT-MRI computations. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, Washington, DC, pp. 792–795 (2007)

    Google Scholar 

  12. Barmpoutis, A., Vemuri, B.C.: Groupwise registration and atlas construction of 4th-order tensor fields using the \(\mathbb{R}^{+}\) Riemannian metric. In: Yang, G.Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI), Part I, London. LNCS, vol. 5761, pp. 640–647 (2009)

    Google Scholar 

  13. Barmpoutis, A., Vemuri, B.C.: A unified framework for estimating diffusion tensors of any order with symmetric positive-definite constraints. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, Rotterdam, pp. 1385–1388 (2010)

    Google Scholar 

  14. Barmpoutis, A., Vemuri, B.C., Forder, J.R.: Registration of high angular resolution diffusion MRI images using 4th order tensors. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Part I, Brisbane. LNCS, vol. 4791, pp. 908–915 (2007)

    Google Scholar 

  15. Barmpoutis, A., Vemuri, B.C., Forder, J.R.: Fast displacement probability profile approximation from HARDI using 4th-order tensors. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, Paris, pp. 911–914 (2008)

    Google Scholar 

  16. Barmpoutis, A., Zhuo, J.: Diffusion kurtosis imaging: robust estimation from DW-MRI using homogeneous polynomials. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, Chicago, pp. 262–265 (2011)

    Google Scholar 

  17. Barnett, A.: Theory of Q-ball imaging redux: implications for fiber tracking. Magn. Reson. Med. 62(4), 910–923 (2009)

    Article  Google Scholar 

  18. Basser, P.J., Mattiello, J., Le Bihan, D.: Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. B 103, 247–254 (1994)

    Article  Google Scholar 

  19. Basser, P.J., Pajevic, S.: A normal distribution for tensor-valued random variables: applications to diffusion tensor MRI. IEEE Trans. Med. Imaging 22, 785–795 (2003)

    Article  Google Scholar 

  20. Basser, P.J., Pajevic, S.: Spectral decomposition of a 4th-order covariance tensor: applications to diffusion tensor MRI. Signal Process. 87, 220–236 (2007)

    Article  MATH  Google Scholar 

  21. Basser, P.J., Pierpaoli, C.: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J. Magn. Reson. Ser. B 111, 209–219 (1996)

    Article  Google Scholar 

  22. Behrens, T.E.J., Johansen-Berg, H., Jbabdi, S., Rushworth, M.F.S., Woolrich, M.W.: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage 34, 144–155 (2007)

    Article  Google Scholar 

  23. Bloy, L., Verma, R.: On computing the underlying fiber directions from the diffusion orientation distribution function. In: Metaxas, D.N., Axel, L., Fichtinger, G., Székely, G. (eds.) Medical Image Computing and Computer-Assisted Intervention (MICCAI), New York. LNCS, vol. 5241, pp. 1–8. Springer (2008)

    Google Scholar 

  24. Boothby, W.: An Introduction to Differentiable Manifolds and Riemannian Geometry. Pure and Applied Mathematics, vol. 120, 2nd edn. Academic, Orlando (1986)

    Google Scholar 

  25. Callaghan, P.T., Eccles, C.D., Xia, Y.: NMR microscopy of dynamic displacements: k-space and q-space imaging. J. Phys. E 21(8), 820–822 (1988)

    Article  Google Scholar 

  26. Comon, P., Golub, G., Lim, L.H., Mourrain, B.: Symmetric tensors and symmetric tensor rank. SIAM J. Matrix Anal. Appl. 30(3), 1254–1279 (2008)

    Article  MathSciNet  Google Scholar 

  27. Correia, M.M., Newcombe, V.F., Williams, G.B.: Contrast-to-noise ratios for indices of anisotropy obtained from diffusion MRI: a study with standard clinical b-values at 3T. NeuroImage 57(3), 1103–1115 (2011)

    Article  Google Scholar 

  28. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Apparent diffusion coefficients from high angular resolution diffusion imaging: estimation and applications. Magn. Reson. Med. 56, 395–410 (2006)

    Article  Google Scholar 

  29. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast, and robust analytical Q-Ball imaging. Magn. Reson. Med. 58, 497–510 (2007)

    Article  Google Scholar 

  30. Descoteaux, M., Deriche, R., Knösche, T.R., Anwander, A.: Deterministic and probabilistic tractography based on complex fibre orientation distributions. IEEE Trans. Med. Imaging 28(2), 269–286 (2009)

    Article  Google Scholar 

  31. De Silva, V., Lim, L.H.: Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J. Matrix Anal. Appl. 30(3), 1084–1127 (2008)

    Article  MathSciNet  Google Scholar 

  32. Ellingson, B.M., Cloughesy, T.F., Lai, A., Nghiemphu, P.L., Liau, L.M., Pope, W.B.: High order diffusion tensor imaging in human glioblastoma. Acad. Radiol. 18(8), 947–954 (2011)

    Article  Google Scholar 

  33. Essen, D.V., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T., Bucholz, R., Chang, A., Chen, L., Corbetta, M., Curtiss, S., Penna, S.D., Feinberg, D., Glasser, M., Harel, N., Heath, A., Larson-Prior, L., Marcus, D., Michalareas, G., Moeller, S., Oostenveld, R., Petersen, S., Prior, F., Schlaggar, B., Smith, S., Snyder, A., Xu, J., Yacoub, E.: The human connectome project: a data acquisition perspective. NeuroImage 62(4), 2222–2231 (2012)

    Article  Google Scholar 

  34. Florack, L., Balmashnova, E., Astola, L., Brunenberg, E.: A new tensorial framework for single-shell high angular resolution diffusion imaging. J. Math. Imaging Vis. 38, 171–181 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  35. Fuster, A., Astola, L., Florack, L.: A Riemannian scalar measure for diffusion tensor images. In: Jiang, X., Petkov, N. (eds.) Computer Analysis of Images and Patterns. LNCS, vol. 5702, pp. 419–426. Springer, Berlin/New York (2009)

    Chapter  Google Scholar 

  36. Fuster, A., van de Sande, J., Astola, L., Poupon, C., Velterop, J., ter Haar Romeny, B.M.: Fourth-order tensor invariants in high angular resolution diffusion imaging. In: Zhang, G.H., Adluru, N. (eds.) Proceedings of the MICCAI Workshop on Computational Diffusion MRI, Toronto, pp. 54–63 (2011)

    Google Scholar 

  37. Gelfand, I., Kapranov, M., Zelevinsky, A.: Discriminants, Resultants, and Multidimensional Determinants. Birkhäuser, Boston (1994)

    Book  MATH  Google Scholar 

  38. Geroch, R.: Mathematical Physics. Chicago Lectures in Physics. University of Chicago Press, Chicago (1985)

    MATH  Google Scholar 

  39. Ghosh, A., Deriche, R.: From second to higher order tensors in diffusion-MRI. In: Aja-Fernández, S., de Luis García, R., Tao, D., Li, X. (eds.) Tensors in Image Processing and Computer Vision, pp. 315–334. Springer, London (2009)

    Chapter  Google Scholar 

  40. Ghosh, A., Deriche, R.: Fast and closed-form ensemble-average-propagator approximation from the 4th-order diffusion tensor. In: Proc. IEEE Int’l Symposium on Biomedical Imaging, pp. 1105–1108 (2010)

    Google Scholar 

  41. Ghosh, A., Deriche, R.: Extracting geometrical features & peak fractional anisotropy from the ODF for white matter characterization. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, Chicago, pp. 266–271 (2011)

    Google Scholar 

  42. Ghosh, A., Deriche, R.: Generalized invariants of a 4th order tensor: building blocks for new biomarkers in dMRI. In: Panagiotaki, E., O’Donnell, L., Schultz, T., Zhang, G.H. (eds.) Proceedings of the Computational Diffusion MRI (CDMRI), Nice, pp. 165–173 (2012)

    Google Scholar 

  43. Ghosh, A., Deriche, R., Moakher, M.: Ternary quartic approach for positive 4th order diffusion tensors revisited. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, Boston, pp. 618–621 (2009)

    Google Scholar 

  44. Ghosh, A., Descoteaux, M., Deriche, R.: Riemannian framework for estimating symmetric positive definite 4th order diffusion tensors. In: Metaxas, D. (ed.) MICCAI, Part I, New York, LNCS, vol. 5241, pp. 858–865 (2008)

    Google Scholar 

  45. Ghosh, A., Özarslan, E., Deriche, R.: Challenges in reconstructing the propagator via a cumulant expansion of the one-dimensional qspace MR signal. In: Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM), Stockholm (2010)

    Google Scholar 

  46. Ghosh, A., Tsigaridas, E., Mourrain, B., Deriche, R.: A polynomial approach for extracting the extrema of a spherical function and its application in diffusion MRI. Med. Image Anal. (2013, in press). doi:10.1016/j.media.2013.03.004

    Google Scholar 

  47. Ghosh, A., Wassermann, D., Deriche, R.: A polynomial approach for maxima extraction and its application to tractography in HARDI. In: Székely, G., Hahn, H.K. (eds.) IPMI, Kloster Irsee. LNCS, vol. 6801, pp. 723–734 (2011)

    Google Scholar 

  48. Grigis, A., Renard, F., Noblet, V., Heinrich, C., Heitz, F., Armspach, J.P.: A new high order tensor decomposition: application to reorientation. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, Chicago, pp. 258–261 (2011)

    Google Scholar 

  49. Gur, Y., Jiao, F., Zhu, S.X., Johnson, C.R.: White matter structure assessment from reduced HARDI data using low-rank polynomial approximations. In: Panagiotaki, E., O’Donnell, L., Schultz, T., Zhang, G.H. (eds.) Proceedings of the Computational Diffusion MRI (CDMRI), Nice, pp. 186–197 (2012)

    Google Scholar 

  50. Hess, C.P., Mukherjee, P., Han, E.T., Xu, D., Vigneron, D.B.: Q-ball reconstruction of multimodal fiber orientations using the spherical harmonic basis. Magn. Reson. Med. 56, 104–117 (2006)

    Article  Google Scholar 

  51. Hillar, C., Lim, L.H.: Most tensor problems are NP-hard. JACM 60(6), Article No. 45 (2012). Preprint, arXiv:0911.1393v2 x

    Google Scholar 

  52. Hitchcock, F.L.: The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 6(1), 164–189 (1927)

    MATH  Google Scholar 

  53. Hitchcock, F.L.: Multiple invariants and generalized rank of a p-way matrix or tensor. J. Math. Phys. 7(1), 39–79 (1927)

    MATH  MathSciNet  Google Scholar 

  54. Hlawitschka, M., Scheuermann, G.: HOT-lines: tracking lines in higher order tensor fields. In: Silva, C., Gröller, E., Rushmeier, H. (eds.) Proceedings of the IEEE Visualization, Minneapolis, pp. 27–34 (2005)

    Google Scholar 

  55. Hlawitschka, M., Scheuermann, G., Anwander, A., Knösche, T., Tittgemeyer, M., Hamann, B.: Tensor lines in tensor fields of arbitrary order. In: Bebis, G., et al. (eds.) Advances in Visual Computing. LNCS, vol. 4841, pp. 341–350. Springer, Berlin/New York (2007)

    Chapter  Google Scholar 

  56. Hui, E.S., Cheung, M.M., Qi, L., Wu, E.X.: Towards better MR characterization of neural tissues using directional diffusion kurtosis analysis. NeuroImage 42, 122–134 (2008)

    Article  Google Scholar 

  57. Hungerford, T.: Algebra. Graduate Texts in Mathematics, vol. 73. Springer, New York (1980)

    Google Scholar 

  58. Jansons, K.M., Alexander, D.C.: Persistent angular structure: new insights from diffusion magnetic resonance imaging data. Inverse Probl. 19, 1031–1046 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  59. Jayachandra, M.R., Rehbein, N., Herweh, C., Heiland, S.: Fiber tracking of human brain using fourth-order tensor and high angular resolution diffusion imaging. Magn. Reson. Med. 60(5), 1207–1217 (2008)

    Article  Google Scholar 

  60. Jensen, J.H., Helpern, J.A.: MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed. 23(7), 698–710 (2010)

    Article  Google Scholar 

  61. Jensen, J.H., Helpern, J.A., Ramani, A., Lu, H., Kaczynski, K.: Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging. Magn. Reson. Med. 53, 1432–1440 (2005)

    Article  Google Scholar 

  62. Jiao, F., Gur, Y., Johnson, C.R., Joshi, S.: Detection of crossing white matter fibers with high-order tensors and rank-k decompositions. In: Székely, G., Hahn, H.K. (eds.) IPMI, Kloster Irsee. LNCS, vol. 6801, pp. 538–549 (2011)

    Google Scholar 

  63. Kindlmann, G., Ennis, D., Whitaker, R., Westin, C.F.: Diffusion tensor analysis with invariant gradients and rotation tangents. IEEE Trans. Med. Imaging 26(11), 1483–1499 (2007)

    Article  Google Scholar 

  64. Kroonenberg, P.: Applied Multiway Data Analysis. Wiley, Hoboken (2008)

    Book  MATH  Google Scholar 

  65. Kuder, T.A., Stieltjes, B., Bachert, P., Semmler, W., Laun, F.B.: Advanced fit of the diffusion kurtosis tensor by directional weighting and regularization. Magn. Reson. Med. 67(5), 1401–1411 (2012)

    Article  Google Scholar 

  66. Landsberg, J.M.: Tensors: Geometry and Applications. Graduate Studies in Mathematics, vol. 128. American Mathematical Society, Providence (2012)

    Google Scholar 

  67. Lang, S.: Differential and Riemannian Manifolds. Graduate Texts in Mathematics, vol. 160, 3rd edn. Springer, New York (1995)

    Google Scholar 

  68. Lang, S.: Algebra. Graduate Texts in Mathematics, vol. 211, rev. 3rd edn. Springer, New York (2002)

    Google Scholar 

  69. Lazar, M., Jensen, J.H., Xuan, L., Helpern, J.A.: Estimation of the orientation distribution function from diffusional kurtosis imaging. Magn. Reson. Med. 60, 774–781 (2008)

    Article  Google Scholar 

  70. Le Bihan, D., Breton, E., Lallemand, D., Grenier, P., Cabanis, E., Laval-Jeantet, M.: MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161(2), 401–407 (1986)

    Article  Google Scholar 

  71. Lenglet, C., Rousson, M., Deriche, R., Faugeras, O.: Statistics on the manifold of multivariate normal distributions: theory and application to diffusion tensor MRI processing. J. Math. Imaging Vis. 25, 423–444 (2006)

    Article  MathSciNet  Google Scholar 

  72. Lim, L.H.: Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Puerto Vallarta, pp. 129–132 (2005)

    Google Scholar 

  73. Lim, L.H.: Tensors and hypermatrices. In: Hogben, L. (ed.) Handbook of Linear Algebra, 2nd edn. CRC, Boca Raton (2013)

    Google Scholar 

  74. Lim, L.H., Comon, P.: Nonnegative approximations of nonnegative tensors. J. Chemom. 23(7–8), 432–441 (2009)

    Article  Google Scholar 

  75. Lim, L.H., Comon, P.: Multisensor array processing: tensor decomposition meets compressed sensing. C. R. Acad. Sci. Paris 338(6), 311–320 (2010)

    MATH  Google Scholar 

  76. Lim, L.H., Schultz, T.: Moment tensors and high angular resolution diffusion imaging (2013). Preprint

    Google Scholar 

  77. Liu, C., Bammer, R., Acar, B., Moseley, M.E.: Characterizing non-Gaussian diffusion by using generalized diffusion tensors. Magn. Reson. Med. 51(5), 924–937 (2004)

    Article  Google Scholar 

  78. Liu, C., Bammer, R., Moseley, M.E.: Generalized diffusion tensor imaging (GDTI): a method for characterizing and imaging diffusion anisotropy caused by non-Gaussian diffusion. Isr. J. Chem. 43(1–2), 145–154 (2003)

    Google Scholar 

  79. Liu, C., Bammer, R., Moseley, M.E.: Limitations of apparent diffusion coefficient-based models in characterizing non-Gaussian diffusion. Magn. Reson. Med. 54, 419–428 (2005)

    Article  Google Scholar 

  80. Liu, C., Mang, S.C., Moseley, M.E.: In vivo generalized diffusion tensor imaging (GDTI) using higher-order tensors (HOT). Magn. Reson. Med. 63, 243–252 (2010)

    Google Scholar 

  81. Liu, Y., Chen, L., Yu, Y.: Diffusion kurtosis imaging based on adaptive spherical integral. IEEE Signal Process. Lett. 18(4), 243–246 (2011)

    Article  Google Scholar 

  82. Lu, H., Jensen, J.H., Ramani, A., Helpern, J.A.: Three-dimensional characterization of non-Gaussian water diffusion in humans using diffusion kurtosis imaging. NMR Biomed. 19, 236–247 (2006)

    Article  MATH  Google Scholar 

  83. Minati, L., Aquino, D., Rampoldi, S., Papa, S., Grisoli, M., Bruzzone, M.G., Maccagnano, E.: Biexponential and diffusional kurtosis imaging, and generalised diffusion-tensor imaging (GDTI) with rank-4 tensors: a study in a group of healthy subjects. Magn. Reson. Mater. Phys. Biol. Med. 20, 241–253 (2007)

    Article  Google Scholar 

  84. Minati, L., Banasik, T., Brzezinski, J., Mandelli, M.L., Bizzi, A., Bruzzone, M.G., Konopka, M., Jasinski, A.: Elevating tensor rank increases anisotropy in brain areas associated with intra-voxel orientational heterogeneity (IVOH): a generalised DTI (GDTI) study. NMR Biomed. 21(1), 2–14 (2008)

    Article  Google Scholar 

  85. Mørup, M., Hansen, L., Arnfred, S., Lim, L.H., Madsen, K.: Shift invariant multilinear decomposition of neuroimaging data. NeuroImage 42(4), 1439–1450 (2008)

    Article  Google Scholar 

  86. Özarslan, E., Mareci, T.: Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging. Magn. Reson. Med. 50, 955–965 (2003)

    Article  Google Scholar 

  87. Özarslan, E., Shepherd, T.M., Vemuri, B.C., Blackband, S.J., Mareci, T.H.: Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT). NeuroImage 31, 1086–1103 (2006)

    Article  Google Scholar 

  88. Özarslan, E., Vemuri, B.C., Mareci, T.H.: Fiber orientation mapping using generalized diffusion tensor imaging. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, Arlington, pp. 1036–1039 (2004)

    Google Scholar 

  89. Özarslan, E., Vemuri, B.C., Mareci, T.H.: Generalized scalar measures for diffusion MRI using trace, variance, and entropy. Magn. Reson. Med. 53, 866–876 (2005)

    Article  Google Scholar 

  90. Özarslan, E., Vemuri, B.C., Mareci, T.H.: Higher rank tensors in diffusion MRI. In: Weickert, J., Hagen, H. (eds.) Visualization and Processing of Tensor Fields, chap. 10, pp. 177–187. Springer, Berlin (2006)

    Chapter  Google Scholar 

  91. Poot, D.H.J., den Dekker, A.J., Achten, E., Verhoye, M., Sijbers, J.: Optimal experimental design for diffusion kurtosis imaging. IEEE Trans. Med. Imaging 29(3), 819–829 (2010)

    Article  Google Scholar 

  92. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005)

    Article  MATH  Google Scholar 

  93. Qi, L., Han, D., Wu, E.X.: Principal invariants and inherent parameters of diffusion kurtosis tensors. J. Math. Anal. Appl. 349, 165–180 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  94. Qi, L., Wang, Y., Wu, E.X.: D-eigenvalues of diffusion kurtosis tensors. J. Comput. Appl. Math. 221, 150–157 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  95. Qi, L., Yu, G., Wu, E.X.: Higher order positive semidefinite diffusion tensor imaging. SIAM J. Imaging Sci. 3(3), 416–433 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  96. Renard, F., Noblet, V., Heinrich, C., Kremer, S.: Reorientation strategies for high order tensors. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, Rotterdam, pp. 1185–1188 (2010)

    Google Scholar 

  97. Schultz, T.: Learning a reliable estimate of the number of fiber directions in diffusion MRI. In: Ayache, N., et al. (eds.) Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI) Part III, Nice. LNCS, vol. 7512, pp. 493–500 (2012)

    Google Scholar 

  98. Schultz, T., Kindlmann, G.: A maximum enhancing higher-order tensor glyph. Comput. Graph. Forum 29(3), 1143–1152 (2010)

    Article  Google Scholar 

  99. Schultz, T., Schlaffke, L., Schölkopf, B., Schmidt-Wilcke, T.: HiFiVE: a hilbert space embedding of fiber variability estimates for uncertainty modeling and visualization. Comput. Graph. Forum 32(3), 121–130 (2013)

    Article  Google Scholar 

  100. Schultz, T., Seidel, H.P.: Estimating crossing fibers: a tensor decomposition approach. IEEE Trans. Vis. Comput. Graph. 14(6), 1635–1642 (2008)

    Article  Google Scholar 

  101. Schultz, T., Westin, C.F., Kindlmann, G.: Multi-diffusion-tensor fitting via spherical deconvolution: a unifying framework. In: Jiang, T., et al. (eds.) Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI), Beijing. LNCS, vol. 6361, pp. 673–680. Springer (2010)

    Google Scholar 

  102. Sidiropoulos, N., Bro, R., Giannakis, G.: Parallel factor analysis in sensor array processing. IEEE Trans. Signal Process. 48(8), 2377–2388 (2000)

    Article  Google Scholar 

  103. Smilde, A., Bro, R., Geladi, P.: Multi-way Analysis: Applications in the Chemical Sciences. Wiley, West Sussex (2004)

    Google Scholar 

  104. Struik, D.J.: Schouten, Levi-Civita and the emergence of tensor calculus. In: Rowe, D., McCleary, J. (eds.) History of Modern Mathematics, vol. 2, pp. 99–105. Academic, Boston (1989)

    Google Scholar 

  105. Tabesh, A., Jensen, J.H., Ardekani, B.A., Helpern, J.A.: Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. Magn. Reson. Med. 65, 823–836 (2011)

    Article  Google Scholar 

  106. Tournier, J.D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35, 1459–1472 (2007)

    Article  Google Scholar 

  107. Tournier, J.D., Calamante, F., Gadian, D.G., Connelly, A.: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage 23, 1176–1185 (2004)

    Article  Google Scholar 

  108. Tristan-Vega, A., Westin, C.F., Aja-Fernandez, S.: A new methodology for the estimation of fiber populations in the white matter of the brain with the funk-radon transform. NeuroImage 49(2), 1301–1315 (2010)

    Article  Google Scholar 

  109. Tuch, D.S.: Q-ball imaging. Magn. Reson. Med. 52, 1358–1372 (2004)

    Article  Google Scholar 

  110. Vasilescu, M., Terzopoulos, D.: Multilinear image analysis for facial recognition. Proc. Int. Conf. Pattern Recognit (ICPR) 2, 511–514 (2002)

    Google Scholar 

  111. Veraart, J., Van Hecke, W., Sijbers, J.: Constrained maximum likelihood estimation of the diffusion kurtosis tensor using a Rician noise model. Magn. Reson. Med. 66, 678–686 (2011)

    Article  Google Scholar 

  112. Warner, F.: Foundations of Differentiable Manifolds and Lie Groups. Graduate Texts in Mathematics, vol. 94. Springer, New York/Berlin (1983)

    Google Scholar 

  113. Weldeselassie, Y.T., Barmpoutis, A., Atkins, M.S.: Symmetric positive-definite Cartesian tensor orientation distribution functions (CT-ODF). In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI), Beijing. LNCS, vol. 6361, pp. 582–589 (2010)

    Google Scholar 

  114. Westin, C.F., Peled, S., Gudbjartsson, H., Kikinis, R., Jolesz, F.A.: Geometrical diffusion measures for MRI from tensor basis analysis. In: Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM), Vancouver, p. 1742 (1997)

    Google Scholar 

  115. Ying, L., Zou, Y.M., Klemer, D.P., Wang, J.J.: Determination of fiber orientation in MRI diffusion tensor imaging based on higher-order tensor decomposition. In: Proceedings of the International Conference on IEEE Engineering in Medicine and Biology Society (EMBS), Lyon, pp. 2065–2068 (2007)

    Google Scholar 

  116. Yokonuma, T.: Tensor Spaces and Exterior Algebra. Translations of Mathematical Monographs, vol. 108. American Mathematical Society, Providence (1992)

    Google Scholar 

Download references

Acknowledgements

A. Ghosh and R. Deriche are partially supported by the NucleiPark research project (ANR Program “Maladies Neurologique et maladies Psychiatriques”) and the France Parkinson Association. L.-H. Lim is partially supported by an AFOSR Young Investigator Award (FA9550-13-1-0133), an NSF CAREER Award (DMS-1057064), and an NSF Collaborative Research Grant (DMS-1209136).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas Schultz , Andrea Fuster or Aurobrata Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schultz, T., Fuster, A., Ghosh, A., Deriche, R., Florack, L., Lim, LH. (2014). Higher-Order Tensors in Diffusion Imaging. In: Westin, CF., Vilanova, A., Burgeth, B. (eds) Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54301-2_6

Download citation

Publish with us

Policies and ethics