Abstract
We describe O(n) time algorithms for finding the minimum weighted dominating induced matching of chordal, dually chordal, biconvex, and claw-free graphs. For the first three classes, we prove tight O(n) bounds on the maximum number of edges that a graph having a dominating induced matching may contain. By applying these bounds, countings and employing existing O(n + m) time algorithms we show that they can be reduced to O(n) time. For claw–free graphs, we describe an algorithm based on that by Cardoso, Korpelainen and Lozin [4], for solving the unweighted version of the problem, which decreases its complexity from O(n 2) to O(n), while additionally solving the weighted version.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brandstädt, A., Hundt, C., Nevries, R.: Efficient edge domination on hole-free graphs in polynomial time. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 650–661. Springer, Heidelberg (2010)
Brandstädt, A., Leitert, A., Rautenbach, D.: Efficient Dominating and Edge Dominating Sets for Graphs and Hypergraphs. In: Chao, K.-M., Hsu, T.-S., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 267–277. Springer, Heidelberg (2012)
Brandstädt, A., Mosca, R.: Dominating Induced Matchings for P 7-free Graphs in Linear Time. In: Asano, T., Nakano, S.-I., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 100–109. Springer, Heidelberg (2011)
Cardoso, D.M., Korpelainen, N., Lozin, V.V.: On the complexity of the dominating induced matching problem in hereditary classes of graphs. Discrete Applied Mathematics 159, 21–531 (2011)
Chen, Z.-Z., Zhang, S.: Tight upper bound on the number of edges in a bipartite K 3,3-free or K 5-free graph with an application. Information Processing Letters 84, 141–145 (2002)
Grinstead, D.L., Slater, P.J., Sherwani, N.A., Holmes, N.D.: Efficient edge domination problems in graphs. Information Processing Letters 48, 221–228 (1993)
Lin, M.C., Mizrahi, M.J., Szwarcfiter, J.L.: Exact algorithms for dominating induced matchings. CoRR, abs/1301.7602 (2013)
Lin, M.C., Mizrahi, M.J., Szwarcfiter, J.L.: An O *(1.1939n) time algorithm for minimum weighted dominating induced matching. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) Algorithms and Computation. LNCS, vol. 8283, pp. 558–567. Springer, Heidelberg (2013)
Lu, C.L., Ko, M.-T., Tang, C.Y.: Perfect edge domination and efficient edge domination in graphs. Discrete Applied Mathematics 119, 227–250 (2002)
Lu, C.L., Tang, C.Y.: Solving the weighted efficient edge domination problem on bipartite permutation graphs. Discrete Applied Mathematics 87, 203–211 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lin, M.C., Mizrahi, M.J., Szwarcfiter, J.L. (2014). O(n) Time Algorithms for Dominating Induced Matching Problems. In: Pardo, A., Viola, A. (eds) LATIN 2014: Theoretical Informatics. LATIN 2014. Lecture Notes in Computer Science, vol 8392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54423-1_35
Download citation
DOI: https://doi.org/10.1007/978-3-642-54423-1_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-54422-4
Online ISBN: 978-3-642-54423-1
eBook Packages: Computer ScienceComputer Science (R0)