Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

O(n) Time Algorithms for Dominating Induced Matching Problems

  • Conference paper
LATIN 2014: Theoretical Informatics (LATIN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8392))

Included in the following conference series:

Abstract

We describe O(n) time algorithms for finding the minimum weighted dominating induced matching of chordal, dually chordal, biconvex, and claw-free graphs. For the first three classes, we prove tight O(n) bounds on the maximum number of edges that a graph having a dominating induced matching may contain. By applying these bounds, countings and employing existing O(n + m) time algorithms we show that they can be reduced to O(n) time. For claw–free graphs, we describe an algorithm based on that by Cardoso, Korpelainen and Lozin [4], for solving the unweighted version of the problem, which decreases its complexity from O(n 2) to O(n), while additionally solving the weighted version.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brandstädt, A., Hundt, C., Nevries, R.: Efficient edge domination on hole-free graphs in polynomial time. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 650–661. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Brandstädt, A., Leitert, A., Rautenbach, D.: Efficient Dominating and Edge Dominating Sets for Graphs and Hypergraphs. In: Chao, K.-M., Hsu, T.-S., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 267–277. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Brandstädt, A., Mosca, R.: Dominating Induced Matchings for P 7-free Graphs in Linear Time. In: Asano, T., Nakano, S.-I., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 100–109. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Cardoso, D.M., Korpelainen, N., Lozin, V.V.: On the complexity of the dominating induced matching problem in hereditary classes of graphs. Discrete Applied Mathematics 159, 21–531 (2011)

    Article  MathSciNet  Google Scholar 

  5. Chen, Z.-Z., Zhang, S.: Tight upper bound on the number of edges in a bipartite K 3,3-free or K 5-free graph with an application. Information Processing Letters 84, 141–145 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Grinstead, D.L., Slater, P.J., Sherwani, N.A., Holmes, N.D.: Efficient edge domination problems in graphs. Information Processing Letters 48, 221–228 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Lin, M.C., Mizrahi, M.J., Szwarcfiter, J.L.: Exact algorithms for dominating induced matchings. CoRR, abs/1301.7602 (2013)

    Google Scholar 

  8. Lin, M.C., Mizrahi, M.J., Szwarcfiter, J.L.: An O *(1.1939n) time algorithm for minimum weighted dominating induced matching. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) Algorithms and Computation. LNCS, vol. 8283, pp. 558–567. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Lu, C.L., Ko, M.-T., Tang, C.Y.: Perfect edge domination and efficient edge domination in graphs. Discrete Applied Mathematics 119, 227–250 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lu, C.L., Tang, C.Y.: Solving the weighted efficient edge domination problem on bipartite permutation graphs. Discrete Applied Mathematics 87, 203–211 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lin, M.C., Mizrahi, M.J., Szwarcfiter, J.L. (2014). O(n) Time Algorithms for Dominating Induced Matching Problems. In: Pardo, A., Viola, A. (eds) LATIN 2014: Theoretical Informatics. LATIN 2014. Lecture Notes in Computer Science, vol 8392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54423-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54423-1_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54422-4

  • Online ISBN: 978-3-642-54423-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics