Abstract
The aim of this lecture series is to present an overview of recent developments in the area of a posteriori error estimation for finite element approximations of hyperbolic problems. The approach pursued here rests on the systematic use of hyperbolic duality arguments. We also discuss the question of computational implementation of the a posteriori error bounds into adaptive finite element algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adams, R.A. (1975). Sobolev Spaces. Academic Press.
Ainsworth, M. and Oden, T. (1996). A Posteriori Error Estimation in Finite Element Analysis. Series in Computational and Applied Maths., Elsevier.
Babuška, I. and Aziz, A.K. (1972). Survey lectures on the mathematical foundation of the finite element method. In: The Mathematical Foundations of the Finite Element Method, A.K. Aziz and I. Babuška, (Eds.), Academic Press.
Baiocchi, C. and Capelo, A. (1984). Variational and Quasi-Variational Inequalities: Applications to Free Boundary Problems. John Wiley & Sons.
Balland, P. and Süli, E. (1997). Analysis of the cell vertex scheme for hyperbolic problems with variable coefficients. SIAM J. Numer. Anal., 34, 1127–1151.
Bank, R. (1985). PLTMG user’s guide. Technical Report Edition 4, University of California, San Diego.
Becker, R. and Rannacher, R. (1996). Weighted a posteriori error control in finite element methods. Technical Report, Universität Heidelberg, Preprint No. 96–01.
Bergh, I. and Löfström, J. (1976). Interpolation Spaces. Springer-Verlag, Grundlehren der Mathematischen Wissenschaften 223.
Bernardi, C. (1989). Optimal finite-element interpolation on curved domains. SIAM J. Numer. Anal., 26, 1212–1240.
Brenier, Y. and Osher, S. (1988). The discrete one-sided Lipschitz condition for convex scalar conservation laws. SIAM J. Numer. Anal., 25, 8–23.
Brenner, S.C. and Scott, L.R. (1997). The Mathematical Theory of Finite Element Methods. 2nd corr. ed. Springer-Verlag. Texts in Applied Mathematics 15.
Ciarlet, P.G. (1978). The Finite Element Method for Elliptic Problems. North Holland, Amsterdam.
Cockburn, B. and Gau, H. (1995). A posteriori error estimates for general numerical methods for scalar conservation laws. Mat. Aplic. Comp., 14, No. 1, 37–47
Cockburn, B. and Gremaud, P.-A. (1996). Error estimates for finite element methods for scalar conservation laws. SIAM J. Numer. Anal., 33, 522–554.
Eriksson, K., Estep, D., Hansbo, P., and Johnson, C. (1995). Introduction to Adaptive Methods for Differential Equations. Acta Numerica. Cambridge University Press. 105–158.
Friedrichs, K.O. (1958). Symmetric positive linear differential equations. Comm. Pure Appl. Math., 11, 333–418.
Führer, C. (1997). A posteriori error control for nonlinear hyperbolic problems. Ph.D. Thesis, SFB 359, Universität Heidelberg.
Giles, M.B. (1997). On adjoint equations for error analysis and optimal grid adaptation in CFD. Oxford University Computing Laboratory Technical Report, NA 97/11.
Giles, M.B., Larson, M.G., Levenstam, M., and Süli, E. (1997). Adaptive error control for finite element approximations of the lift and drag in a viscous flow. Oxford University Computing Laboratory Technical Report, NA 97/06.
Girault, V. and Raviart, P.-A. (1979). Finite Element Approximation of the Navier-Stokes Equations. Lecture Notes in Mathematics 749. Springer-Verlag.
Godlewski, E. and Raviart, P.-A. (1996). Numerical Approximation of Hyperbolic Systems of Conservation Laws. Series in Applied Mathematical Sciences 118. Springer-Verlag.
Hairer, E., Norsett, S., and Wanner, G. (1993). Solving ordinary differential equations. 2nd rev. ed. Series in Computational Mathematics 8. Springer-Verlag.
Handscomb, D.C. (1995). Error of linear interpolation on a triangle. Oxford University Computing Laboratory Technical Report, NA 95/09.
Hebeker, F.-K, Führer, C., and Rannacher, R. (1997). An adaptive finite element method for unsteady convection-dominated flows with stiff source terms. Preprint (SFB 359), Universität Heidelberg.
Houston, P., Mackenzie, J., Süli, E., and Warnecke, G. (1999). A posteriori error analysis of Petrov-Galerkin approximations of Friedrichs systems. Numerische Mathematik (to appear).
Houston, P. and Süli, E. (1995). Adaptive Lagrange-Galerkin methods for unsteady convection-dominated diffusion problems. Oxford University Computing Laboratory Technical Report, NA95/24.
Houston, P. and Süli, E. (1996). On the design of an artificial diffusion model for the Lagrange-Galerkin method on unstructured triangular grids. Oxford University Computing Laboratory Technical Report, NA96/07.
Houston, P. and Süli, E. (1997). Local a posteriori error analysis for hyperbolic problems. Oxford University Computing Laboratory Technical Report, NA 97/14.
Johnson, C. (1990). Adaptive finite element methods for diffusion and convection problems. Computer Methods in Applied Mechanics and Engineering, 82, 301–322.
Johnson, C. (1994). A new paradigm for adaptive finite element methods. In: Whiteman, J.R., ed., The Mathematics of Finite Elements and Applications. Highlights 1993. John Wiley & Sons, 105–120.
Johnson, C. and Hansbo, P. (1992). Adaptive finite element methods in computational mechanics. Computer Methods in Applied Mechanics and Engineering, 101, 143–181.
Johnson, C. and Szepessy, A. (1995). Adaptive finite element methods for conservation laws based on a posteriori estimates. Comm. Pure Appl. Math., 48, 199–243.
Kröner, D. (1997). Numerical Schemes for Conservation Laws. John Wiley Si Sons and B.G. Taubner Publishers.
Kröner, D. and Ohlberger, M. (1998). A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multi dimensions. Freiburg. Preprint 02–1998
Kufner, A., John, O., and Fucik, S. (1977) Function Spaces. Noordhoff International Publishing.
Lax, P.D. (1955). On the Cauchy problem for hyperbolic equations and the differentiability of solutions of elliptic equations. Comm. Pure. Appl. Math., 8, 615–633.
Lax, P.D. and Phillips, R.S. (1960). Local boundary conditions for dissipative symmetric linear differential operators. Comm. Pure Appl. Math., 13, 427–455.
Lesaint, P. (1973). Finite element methods for symmetric hyperbolic equations. Numer. Math., 21, 244–255.
Lesaint, P. and Raviart, P.-A. (1979). Finite element collocation methods for first order systems. Math. Comput., 33, 891–918.
Mackenzie, J., Sonar, T., and Süli, E. (1994). Adaptive finite volume methods for hyperbolic problems. In: Whiteman, J.R., ed., The Mathematics of Finite Elements and Applications. Highlights 1993. John Wiley & Sons, 289–298.
Mackenzie, J., Süli, E., and Warnecke, G. (1994). A posteriori error estimates for the cell-vertex finite volume method. In: Hackbusch, W. and Wittum, G., eds., Adaptive Methods: Algorithms, Theory and Applications. Vieweg, Braunschweig, 44, 221–235.
Mackenzie, J., Süli, E., and Warnecke, G. (1995). A posteriori error analysis of Petrov-Galerkin approximations of Friedrichs systems. Oxford University Computing Laboratory Technical Report. NA95/01.
Melenk, J.M., and Schwab, C. (1997). An hp finite element method for convection-diffusion problems. Reseach Report No 97–05, Seminar für Angewandte Mathematik, ETH, Zürich.
Morton, K.W. and Süli, E. (1991). Finite volume methods and their analysis. IMA Journal of Numerical Analysis, 11, 241–60.
Morton, K.W. and Süli, E. (1994). A posteriori and a priori error analysis of finite volume methods. In: Whiteman, J.R., ed., The Mathematics of Finite Elements and Applications. Highlights 1993. John Wiley & Sons, 267–288.
Morton, K.W. and Süli, E. (1995). Evolution Galerkin methods and their supra-convergence. Numerische Mathematik, 71, 331–355. 194 E. Süli
Nečas, J. (1967). Les méthodes directes en théorie des équations elliptiques. Masson, Paris.
Peraire, J., Paraschivoiu, M., and Patera, A. (1996). A posteriori finite element bounds for linear functional outputs of elliptic partial differential equations. Symposium on Advances in Computational Mechanics. Submitted to Comp. Meth. Appl. Engnrg.
Rannacher, R. and Suttmeier F.-T. (1996). A feed-back approach to error control in finite element methods: application to linear elasticity. Preprint 96–42 (SFB 359), University of Heidelberg.
Rauch, J. (1972) G 2 is a continuable initial condition for Kreiss’ mixed problems. Comm. Pure Appl. Math., 25, 265–285.
Sandboge, R. (1996). Adaptive Finite Element Methods for Reactive Flow Problems. Ph.D. Thesis. Department of Mathematics Chalmers University Göteborg.
Sonar, T. and Süli, E. (1998). A dual graph-norm refinement indicator for finite volume approximations of the Euler equations. Numerische Mathematik, 78, No. 4, 619–658.
Süli, E. (1989). Finite volume methods on distorted meshes: stability, accuracy, adaptivity. Oxford University Computing Laboratory Technical Report, NA89/06.
Süli, E. (1992). The accuracy of cell vertex finite volume methods on quadrilateral meshes. Math. Comput., 59, 359–382.
Süli, E. (1991). The accuracy of finite volume methods on distorted partitions. In: Whiteman, J.R., ed., The Mathematics of Finite Elements and Applications VII, Academic Press, London, 253–260.
Süli, E. (1996). A posteriori error analysis and global error control for adaptive finite element approximations of hyperbolic problems. In: D.F. Griffiths and G.A. Watson, eds. Numerical Analysis 1995, Pitman Lecture Notes in Mathematics Series 344, 169–190.
Süli, E. and Houston, P. (1997). Finite element methods for hyperbolic problems: a posteriori error analysis and adaptivity. In: I.S. Duff and G.A. Watson, eds. The State of the Art in Numerical Analysis, Clarendon Press, Oxford, 441–471.
Tartakoff, D. (1972). Regularity of solutions to boundary value problems for first order systems. Indiana University Mathematics Journal, 21, No. 12, 1113 –1129.
Tadmor, E. (1991). Local error estimates for discontinuous solutions of nonlinear hyperbolic equations. SIAM J. Numer. Anal., 28, 891–906.
Szabó, B. and Babuška, I. (1991). Finite Element Analysis. J. Wiley & Sons, New York.
Verfürth, R. (1996). A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. B.G. Teubner, Stuttgart.
Winther, R. (1981). A stable finite element method for initial boundary value problems for first-order hyperbolic systems. Math. Comput., 36, 65–86.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Süli, E. (1999). A Posteriori Error Analysis and Adaptivity for Finite Element Approximations of Hyperbolic Problems. In: Kröner, D., Ohlberger, M., Rohde, C. (eds) An Introduction to Recent Developments in Theory and Numerics for Conservation Laws. Lecture Notes in Computational Science and Engineering, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58535-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-58535-7_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-65081-2
Online ISBN: 978-3-642-58535-7
eBook Packages: Springer Book Archive