Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Posteriori Error Analysis and Adaptivity for Finite Element Approximations of Hyperbolic Problems

  • Chapter
An Introduction to Recent Developments in Theory and Numerics for Conservation Laws

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 5))

Abstract

The aim of this lecture series is to present an overview of recent developments in the area of a posteriori error estimation for finite element approximations of hyperbolic problems. The approach pursued here rests on the systematic use of hyperbolic duality arguments. We also discuss the question of computational implementation of the a posteriori error bounds into adaptive finite element algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adams, R.A. (1975). Sobolev Spaces. Academic Press.

    Google Scholar 

  2. Ainsworth, M. and Oden, T. (1996). A Posteriori Error Estimation in Finite Element Analysis. Series in Computational and Applied Maths., Elsevier.

    Google Scholar 

  3. Babuška, I. and Aziz, A.K. (1972). Survey lectures on the mathematical foundation of the finite element method. In: The Mathematical Foundations of the Finite Element Method, A.K. Aziz and I. Babuška, (Eds.), Academic Press.

    Google Scholar 

  4. Baiocchi, C. and Capelo, A. (1984). Variational and Quasi-Variational Inequalities: Applications to Free Boundary Problems. John Wiley & Sons.

    Google Scholar 

  5. Balland, P. and Süli, E. (1997). Analysis of the cell vertex scheme for hyperbolic problems with variable coefficients. SIAM J. Numer. Anal., 34, 1127–1151.

    Article  MATH  Google Scholar 

  6. Bank, R. (1985). PLTMG user’s guide. Technical Report Edition 4, University of California, San Diego.

    Google Scholar 

  7. Becker, R. and Rannacher, R. (1996). Weighted a posteriori error control in finite element methods. Technical Report, Universität Heidelberg, Preprint No. 96–01.

    Google Scholar 

  8. Bergh, I. and Löfström, J. (1976). Interpolation Spaces. Springer-Verlag, Grundlehren der Mathematischen Wissenschaften 223.

    Book  MATH  Google Scholar 

  9. Bernardi, C. (1989). Optimal finite-element interpolation on curved domains. SIAM J. Numer. Anal., 26, 1212–1240.

    Article  MathSciNet  MATH  Google Scholar 

  10. Brenier, Y. and Osher, S. (1988). The discrete one-sided Lipschitz condition for convex scalar conservation laws. SIAM J. Numer. Anal., 25, 8–23.

    Article  MathSciNet  MATH  Google Scholar 

  11. Brenner, S.C. and Scott, L.R. (1997). The Mathematical Theory of Finite Element Methods. 2nd corr. ed. Springer-Verlag. Texts in Applied Mathematics 15.

    Google Scholar 

  12. Ciarlet, P.G. (1978). The Finite Element Method for Elliptic Problems. North Holland, Amsterdam.

    MATH  Google Scholar 

  13. Cockburn, B. and Gau, H. (1995). A posteriori error estimates for general numerical methods for scalar conservation laws. Mat. Aplic. Comp., 14, No. 1, 37–47

    MathSciNet  MATH  Google Scholar 

  14. Cockburn, B. and Gremaud, P.-A. (1996). Error estimates for finite element methods for scalar conservation laws. SIAM J. Numer. Anal., 33, 522–554.

    Article  MathSciNet  MATH  Google Scholar 

  15. Eriksson, K., Estep, D., Hansbo, P., and Johnson, C. (1995). Introduction to Adaptive Methods for Differential Equations. Acta Numerica. Cambridge University Press. 105–158.

    Google Scholar 

  16. Friedrichs, K.O. (1958). Symmetric positive linear differential equations. Comm. Pure Appl. Math., 11, 333–418.

    MathSciNet  MATH  Google Scholar 

  17. Führer, C. (1997). A posteriori error control for nonlinear hyperbolic problems. Ph.D. Thesis, SFB 359, Universität Heidelberg.

    Google Scholar 

  18. Giles, M.B. (1997). On adjoint equations for error analysis and optimal grid adaptation in CFD. Oxford University Computing Laboratory Technical Report, NA 97/11.

    Google Scholar 

  19. Giles, M.B., Larson, M.G., Levenstam, M., and Süli, E. (1997). Adaptive error control for finite element approximations of the lift and drag in a viscous flow. Oxford University Computing Laboratory Technical Report, NA 97/06.

    Google Scholar 

  20. Girault, V. and Raviart, P.-A. (1979). Finite Element Approximation of the Navier-Stokes Equations. Lecture Notes in Mathematics 749. Springer-Verlag.

    Google Scholar 

  21. Godlewski, E. and Raviart, P.-A. (1996). Numerical Approximation of Hyperbolic Systems of Conservation Laws. Series in Applied Mathematical Sciences 118. Springer-Verlag.

    Google Scholar 

  22. Hairer, E., Norsett, S., and Wanner, G. (1993). Solving ordinary differential equations. 2nd rev. ed. Series in Computational Mathematics 8. Springer-Verlag.

    Google Scholar 

  23. Handscomb, D.C. (1995). Error of linear interpolation on a triangle. Oxford University Computing Laboratory Technical Report, NA 95/09.

    Google Scholar 

  24. Hebeker, F.-K, Führer, C., and Rannacher, R. (1997). An adaptive finite element method for unsteady convection-dominated flows with stiff source terms. Preprint (SFB 359), Universität Heidelberg.

    Google Scholar 

  25. Houston, P., Mackenzie, J., Süli, E., and Warnecke, G. (1999). A posteriori error analysis of Petrov-Galerkin approximations of Friedrichs systems. Numerische Mathematik (to appear).

    Google Scholar 

  26. Houston, P. and Süli, E. (1995). Adaptive Lagrange-Galerkin methods for unsteady convection-dominated diffusion problems. Oxford University Computing Laboratory Technical Report, NA95/24.

    Google Scholar 

  27. Houston, P. and Süli, E. (1996). On the design of an artificial diffusion model for the Lagrange-Galerkin method on unstructured triangular grids. Oxford University Computing Laboratory Technical Report, NA96/07.

    Google Scholar 

  28. Houston, P. and Süli, E. (1997). Local a posteriori error analysis for hyperbolic problems. Oxford University Computing Laboratory Technical Report, NA 97/14.

    Google Scholar 

  29. Johnson, C. (1990). Adaptive finite element methods for diffusion and convection problems. Computer Methods in Applied Mechanics and Engineering, 82, 301–322.

    Article  MathSciNet  MATH  Google Scholar 

  30. Johnson, C. (1994). A new paradigm for adaptive finite element methods. In: Whiteman, J.R., ed., The Mathematics of Finite Elements and Applications. Highlights 1993. John Wiley & Sons, 105–120.

    Google Scholar 

  31. Johnson, C. and Hansbo, P. (1992). Adaptive finite element methods in computational mechanics. Computer Methods in Applied Mechanics and Engineering, 101, 143–181.

    Article  MathSciNet  MATH  Google Scholar 

  32. Johnson, C. and Szepessy, A. (1995). Adaptive finite element methods for conservation laws based on a posteriori estimates. Comm. Pure Appl. Math., 48, 199–243.

    MathSciNet  MATH  Google Scholar 

  33. Kröner, D. (1997). Numerical Schemes for Conservation Laws. John Wiley Si Sons and B.G. Taubner Publishers.

    MATH  Google Scholar 

  34. Kröner, D. and Ohlberger, M. (1998). A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multi dimensions. Freiburg. Preprint 02–1998

    Google Scholar 

  35. Kufner, A., John, O., and Fucik, S. (1977) Function Spaces. Noordhoff International Publishing.

    Google Scholar 

  36. Lax, P.D. (1955). On the Cauchy problem for hyperbolic equations and the differentiability of solutions of elliptic equations. Comm. Pure. Appl. Math., 8, 615–633.

    Article  MathSciNet  MATH  Google Scholar 

  37. Lax, P.D. and Phillips, R.S. (1960). Local boundary conditions for dissipative symmetric linear differential operators. Comm. Pure Appl. Math., 13, 427–455.

    Article  MathSciNet  MATH  Google Scholar 

  38. Lesaint, P. (1973). Finite element methods for symmetric hyperbolic equations. Numer. Math., 21, 244–255.

    Article  MathSciNet  MATH  Google Scholar 

  39. Lesaint, P. and Raviart, P.-A. (1979). Finite element collocation methods for first order systems. Math. Comput., 33, 891–918.

    MathSciNet  MATH  Google Scholar 

  40. Mackenzie, J., Sonar, T., and Süli, E. (1994). Adaptive finite volume methods for hyperbolic problems. In: Whiteman, J.R., ed., The Mathematics of Finite Elements and Applications. Highlights 1993. John Wiley & Sons, 289–298.

    Google Scholar 

  41. Mackenzie, J., Süli, E., and Warnecke, G. (1994). A posteriori error estimates for the cell-vertex finite volume method. In: Hackbusch, W. and Wittum, G., eds., Adaptive Methods: Algorithms, Theory and Applications. Vieweg, Braunschweig, 44, 221–235.

    Google Scholar 

  42. Mackenzie, J., Süli, E., and Warnecke, G. (1995). A posteriori error analysis of Petrov-Galerkin approximations of Friedrichs systems. Oxford University Computing Laboratory Technical Report. NA95/01.

    Google Scholar 

  43. Melenk, J.M., and Schwab, C. (1997). An hp finite element method for convection-diffusion problems. Reseach Report No 97–05, Seminar für Angewandte Mathematik, ETH, Zürich.

    Google Scholar 

  44. Morton, K.W. and Süli, E. (1991). Finite volume methods and their analysis. IMA Journal of Numerical Analysis, 11, 241–60.

    Article  MathSciNet  MATH  Google Scholar 

  45. Morton, K.W. and Süli, E. (1994). A posteriori and a priori error analysis of finite volume methods. In: Whiteman, J.R., ed., The Mathematics of Finite Elements and Applications. Highlights 1993. John Wiley & Sons, 267–288.

    Google Scholar 

  46. Morton, K.W. and Süli, E. (1995). Evolution Galerkin methods and their supra-convergence. Numerische Mathematik, 71, 331–355. 194 E. Süli

    Google Scholar 

  47. Nečas, J. (1967). Les méthodes directes en théorie des équations elliptiques. Masson, Paris.

    MATH  Google Scholar 

  48. Peraire, J., Paraschivoiu, M., and Patera, A. (1996). A posteriori finite element bounds for linear functional outputs of elliptic partial differential equations. Symposium on Advances in Computational Mechanics. Submitted to Comp. Meth. Appl. Engnrg.

    Google Scholar 

  49. Rannacher, R. and Suttmeier F.-T. (1996). A feed-back approach to error control in finite element methods: application to linear elasticity. Preprint 96–42 (SFB 359), University of Heidelberg.

    Google Scholar 

  50. Rauch, J. (1972) G 2 is a continuable initial condition for Kreiss’ mixed problems. Comm. Pure Appl. Math., 25, 265–285.

    MathSciNet  MATH  Google Scholar 

  51. Sandboge, R. (1996). Adaptive Finite Element Methods for Reactive Flow Problems. Ph.D. Thesis. Department of Mathematics Chalmers University Göteborg.

    Google Scholar 

  52. Sonar, T. and Süli, E. (1998). A dual graph-norm refinement indicator for finite volume approximations of the Euler equations. Numerische Mathematik, 78, No. 4, 619–658.

    Article  MathSciNet  MATH  Google Scholar 

  53. Süli, E. (1989). Finite volume methods on distorted meshes: stability, accuracy, adaptivity. Oxford University Computing Laboratory Technical Report, NA89/06.

    Google Scholar 

  54. Süli, E. (1992). The accuracy of cell vertex finite volume methods on quadrilateral meshes. Math. Comput., 59, 359–382.

    MATH  Google Scholar 

  55. Süli, E. (1991). The accuracy of finite volume methods on distorted partitions. In: Whiteman, J.R., ed., The Mathematics of Finite Elements and Applications VII, Academic Press, London, 253–260.

    Google Scholar 

  56. Süli, E. (1996). A posteriori error analysis and global error control for adaptive finite element approximations of hyperbolic problems. In: D.F. Griffiths and G.A. Watson, eds. Numerical Analysis 1995, Pitman Lecture Notes in Mathematics Series 344, 169–190.

    Google Scholar 

  57. Süli, E. and Houston, P. (1997). Finite element methods for hyperbolic problems: a posteriori error analysis and adaptivity. In: I.S. Duff and G.A. Watson, eds. The State of the Art in Numerical Analysis, Clarendon Press, Oxford, 441–471.

    Google Scholar 

  58. Tartakoff, D. (1972). Regularity of solutions to boundary value problems for first order systems. Indiana University Mathematics Journal, 21, No. 12, 1113 –1129.

    Article  MathSciNet  MATH  Google Scholar 

  59. Tadmor, E. (1991). Local error estimates for discontinuous solutions of nonlinear hyperbolic equations. SIAM J. Numer. Anal., 28, 891–906.

    Article  MathSciNet  MATH  Google Scholar 

  60. Szabó, B. and Babuška, I. (1991). Finite Element Analysis. J. Wiley & Sons, New York.

    MATH  Google Scholar 

  61. Verfürth, R. (1996). A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. B.G. Teubner, Stuttgart.

    MATH  Google Scholar 

  62. Winther, R. (1981). A stable finite element method for initial boundary value problems for first-order hyperbolic systems. Math. Comput., 36, 65–86.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Süli, E. (1999). A Posteriori Error Analysis and Adaptivity for Finite Element Approximations of Hyperbolic Problems. In: Kröner, D., Ohlberger, M., Rohde, C. (eds) An Introduction to Recent Developments in Theory and Numerics for Conservation Laws. Lecture Notes in Computational Science and Engineering, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58535-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58535-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65081-2

  • Online ISBN: 978-3-642-58535-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics