Abstract
We consider polynomials and rational functions which are invariant under the action of a finite linear group. The aim is to give a survey over the knowledge on some structural properties of such rings and fields of invariants. Particular emphasis lies on the modular case, where the characteristic of the ground field divides the group order.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
A. S. Abhyankar, Projective polynomials, Proc. Amer. Math. Soc. 125 (1997), 1643–1650.
D.J. Benson, Polynomial Invariants of Finite Groups, LMS Lecture Notes Series, vol. 190, Cambridge University Press, Cambridge, 1993.
H. E. A. Campbell, A. V. Geramita, I. P. Hughes, R. J. Shank, D. L. Wehlau, Non-Cohen-Macaulay vector invariants and a Noether bound for a Gorenstein ring of invariants, preprint,Kingston, Ontario 1996.
D. Carlisle, P.H. Kropholler, Rational invariants of certain orthogonal and unitary groups, Bull. London Math. Soc. 24 (1992) 57–60.
C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 67 (1955) 778–782.
D. Eisenbud, Commutative Algebra with a View toward Algebraic Geometry, Graduate Texts in Mathematics vol. 150, Springer, New York, 1995
E. Fischer, Die Isomorphie der Invariantenkorper der endlichen Abelschen Gruppen linearer Transformationen,Nachr. Konigl. Ges. Wiss. Gottingen (1915),77–80.
N.L. Gordeev, Finite linear groups whose algebras of invariants are complete intersections, Math. USSR Izv. 28 (1987), 335–379.
V. Kac, K. Watanabe, Finite linear groups whose ring of invariants is a complete intersection, Bull. Amer. Math. Soc. 6 (1982), 221–223.
G. Kemper, Das Noethersche Problem und generische Polynome, Dissertation, Universitat Heidelberg, 1994.
G. Kemper, Calculating invariant rings of finite groups over arbitrary fields, J. Symbolic Computation21(1996), 351–366.
G. Kemper, On the Cohen-Macaulay property of modular invariant rings, submitted; IWR-preprint 97-38.
G. Kemper, Hilbert series and degree bounds in invariant theory, this volume.
G. Kemper, G. Malle, The finite irreducible linear groups with polynomial ring of invariants, TI-ansformation Groups2(1997), 57–89.
G.Kemper, G.Malle, Invariant fields of finite irreducible reflection groups, submitted; IWR-preprint 97–26.
H. Lenstra, Rational functions invariant under a finite abelian group, Invent. Math. 25(1974), 299–325.
T. Maeda, Noether’s problem for As, J. Algebra 125 (1989), 418–430.
T. Miyata, Invariants of certain groups I, Nagoya Math. J. 41(1971), 69–73.
H. Nakajima, Invariants of finite groups generated by pseudo-reflections in positive characteristic, Tsukuba J. Math. 3 (1979), 109–122.
H. Nakajima, Invariants of finite abelian groups generated by transvections, Tokyo J. Math. 3 (1980), 201–214.
H. Nakajima, Regular rings of invariants of unipotent groups, J. Algebra 85 (1983), 253–286.
H. Nakajima, Quotient complete intersections of affine spaces by finite linear groups, Nagoya Math. J. 98(1985), 1–36.
E. Noether, Gleichungen mit vorgeschriebener Gruppe, Math. ’Ann. 78(1918), 221–229.
D. Saltman, Generic Galois extensions and problems in field theory, Adv. in Math. 43(1982), 250–283.
J .-P. Serre, Groupes finis d’automorphismes d’anneaux locaux reguliers, in: Golloque d’Algebre ENSJF (1967), Paris, pp. 801–811.
G. C. Shephard, J. A. Todd, Finite unitary reflection groups, Ganad. J. Math. 6 (1954), 274–304.
L. SMITH, Polynomial Invariants of Finite Groups,A. K. Peters, Wellesley, Mass. 1995.
R.P. Stanley, Hilbert functions of graded algebras, Adv. in Math. 28(1978), 57–83.
R.P. Stanley, Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc. 1 (1979), 475–511.
B. Sturmfels, Algorithms in Invariant Theory, Springer, Wien, New York 1993.
R. Swan, Invariant rational functions and a problem of Steenrod, Invent. Math. 7(1969), 148–158.
V.E. VoskresenskII, Birational properties of linear algebraic groups (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 34(1970), 366–375. English translation: Math.USSR - Izv.4 (1970), 1-17.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dolzmann, A., Sturm, T., Weispfenning, V. (1999). Real Quantifier Elimination in Practice. In: Matzat, B.H., Greuel, GM., Hiss, G. (eds) Algorithmic Algebra and Number Theory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59932-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-59932-3_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64670-9
Online ISBN: 978-3-642-59932-3
eBook Packages: Springer Book Archive