Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Characterising Virtual Eigensignatures for General Purpose Face Recognition

  • Chapter
Face Recognition

Part of the book series: NATO ASI Series ((NATO ASI F,volume 163))

  • 1044 Accesses

Abstract

We describe an eigenspace manifold for the representation and recognition of pose-varying faces. The distribution of faces in this manifold allows us to determine theoretical recognition characteristics which are then verified experimentally. Using this manifold a framework is proposed which can be used for both familiar and unfamiliar face recognition. A simple implementation demonstrates the pose dependent nature of the system over the transition from unfamiliar to familiar face recognition. Furthermore we show that multiple test images, whether real or virtual, can be used to augment the recognition process. The results compare favourably with reported human face recognition experiments. Finally, we describe how this framework can be used as a mechanism for characterising faces from video for general purpose recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bruce, V., Valentine, T., Baddeley, A. (1987) The Basis of the 3/4 View-Advantage in Face Recognition. App. Cog. Psych., 1, 109–120

    Article  Google Scholar 

  2. Costen, P., Craw, I., Robertson, G., Akamatsu, S. (1996) Automatic face recognition: What representation? Computer Vision, ECCV’96, LNCS, Springer-Verlag, 1064, 504–513

    Google Scholar 

  3. McKenna, S., Gong, S. Collins, J. (1996) Face Tracking and Pose Representation. British Machine Vision Conference, Edinburgh

    Google Scholar 

  4. Moghaddam, B. and Pentland, A. (1994) Face Recognition using view-based and modular eigenspaces. SPIE, 2277, 12–21

    Article  Google Scholar 

  5. Moody, J. and Darken, C. (1989) Fast Learning in Networks of Locally-Tuned Processing Units. Neural Computation, 1, 281–294

    Article  Google Scholar 

  6. Murase, H. and Nayar, S. (1993) Learning Object Models from Appearance. Proc. of the AAAI, Washington, 836–843

    Google Scholar 

  7. Patterson, K. and Baddeley, A. (1977) When Face Recognition Fails. J. of Exp. Psychology: Learning Memory and Cognition, 3(4), 406–417

    Article  Google Scholar 

  8. Pentland, A., Moghaddam B., Starner, T. (1994) View-Based and Modular Eigenspaces for Face Recognition. IEEE Conf. CVPR, 84–91

    Google Scholar 

  9. Sirovich, L. and Kirby, M. (1987) Low Dimensional procedure for the characterisation of human faces. J.O.S.A, 4(3), 519–525

    Article  Google Scholar 

  10. Turk, M. and Pentland, A. (1991) Eigenfaces for Recognition. J. of Cognitive Neuroscience, 3(2), 71–86

    Article  Google Scholar 

  11. Valentin, D. and Abdi, H. (1996) Can a Linear Autoassociator Recognize Faces From New Orientations. J.O.S.A, 13(4), 717–724

    Article  Google Scholar 

  12. Valentin, D., Abdi, H., Edelman, B. (1997) What Represents a Face: A Computational Approach for the Integration of Physiological and Psychological Data. Perception, 26

    Google Scholar 

  13. Vetter, T and Poggio, T. (1995) Linear Object Classes and Image Synthesis from a Single Example Image. TR 16, Max-Planck-Institut für biologische Kybernetik

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Graham, D.B., Allinson, N.M. (1998). Characterising Virtual Eigensignatures for General Purpose Face Recognition. In: Wechsler, H., Phillips, P.J., Bruce, V., Soulié, F.F., Huang, T.S. (eds) Face Recognition. NATO ASI Series, vol 163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72201-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72201-1_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72203-5

  • Online ISBN: 978-3-642-72201-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics