Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Mechanisms of Water-Wave Breaking

  • Conference paper
Breaking Waves
  • 286 Accesses

Abstract

The fluid mechanics of wave breaking is discussed, selecting only aspects involved directly in the wave breaking process rather than wave evolution towards breaking or the effects of breaking. As well as plunging and spilling breakers other less usual topics are considered including examples where the free surface “breaks” at a trough rather than a crest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Banner, M.L. and Phillips, O.M. (1974) On the incipient breaking of small-scale waves. J.Fluid Mech. 65, 647–656.

    Article  ADS  MATH  Google Scholar 

  • Battjes, J.A. and Sakai, T. (1981) Velocity field in a steady breaker J.Fluid Mech. 111, 421–437.

    Article  ADS  Google Scholar 

  • Cooker, M.J. and Peregrine, D.H. (1991) Violent motion as near-breaking water waves meet a vertical wall. Proc. IUTAM Symposium.

    Google Scholar 

  • Douglas, S.L. and Weggel, J.E. (1988) A laboratory experiment on the influence of wind on nearshore breaking waves. Proc. 21st Internat. Conf. Coastal Engng. A.S.C.E. 1, 632–643.

    Google Scholar 

  • Dritschel, D.G. (1988) The repeated filamentation of two-dimensional vorticity interfaces. J.Fluid Mech. 194, 511–547.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Duncan, J.H. (1981) An experimental investigation of breaking waves produced by a towed hydrofoil. Proc.Roy.Soc.Lond. A 377, 331–348.

    Article  ADS  Google Scholar 

  • Duncan, J.H. (1983) The breaking and non-breaking wave resistance of a two-dimensional hydrofoil. J. Fluid Mech. 126, 507–520.

    Article  ADS  Google Scholar 

  • Greenhow, M. (1988) Water-entry and -exit of a horizontal circular cylinder. Appl. Ocean Res. 10, 199–206.

    Article  Google Scholar 

  • Hasselmann, K. (1971) On the mass and momentum transfer between short gravity and larger-scale motions. J.Fluid Mech., 50, 189–205.

    Article  ADS  MATH  Google Scholar 

  • Longuet-Higgins, M.S. (1972) A class of exact, time-dependent, free surface flows. J.Fluid Mech. 55, 529–543.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Longuet-Higgins, M.S. (1973) A model of flow separation at a free surface. J.Fluid Mech. 57, 129–148.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Longuet-Higgins, M.S. (1980) On the forming of sharp corners at a free surface. Proc.Roy.Soc.Lond. A 371, 453–478.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Longuet Higgins, M.S. (1983) Bubbles, breaking waves and hyperbolic jets at a free surface. J.Fluid Mech. 127, 103–121.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Longuet-Higgins, M.S. (1991) Capillary rollers and bores, in Proc. IUTAM Sympos. “Breaking Waves.

    Google Scholar 

  • Madsen, P.A. and Svendsen, I.A. (1983) Turbulent bores and hydraulic jumps. J.Fluid Mech. 129, 1–25.

    Article  ADS  MATH  Google Scholar 

  • Nadaoka, K., Hino, M. and Koyano, Y. (1989) Structure of the turbulent flow field under breaking waves in the surf zone. J.Fluid Mech. 204, 359–387.

    Article  ADS  Google Scholar 

  • Ohring, S. and Lugt, H.J. (1991) Interaction of a viscous vortex pair with the free surface. J.Fluid Mech. 227, 47–70.

    Article  ADS  Google Scholar 

  • Ohtsa, I. and Yasuda, Y. (1991) Transition from supercritical to subcritical flow at an abrupt drop. J. Hydraulic Res. 29, 309–328.

    Article  Google Scholar 

  • Peregrine, D.H. (1974) Surface shear waves. J.Hydraul.Div., Proc. Amer. Soc. Civil Eng. 1100, 1215–1227. [Discussion in 101, 1032–1034 (1975)].

    Google Scholar 

  • Peregrine, D.H. (1981) The fascination of fluid mechanics. J.Fluid Mech. 106, 59–80.

    Article  ADS  MATH  Google Scholar 

  • Peregrine, D.H. and Svendsen, I.A. (1978) Spilling breakers, bores and hydraulic jumps. Proc. 16th Coastal Engng.Conf. ASCE Hamburg, 1, 540–550.

    Google Scholar 

  • Peregrine, D.H., Cokelet, E.D. and Mclver, P. (1980) The fluid mechanics of waves approaching breaking. Proc. 17th Coastal Engng.Conf. ASCE, Sydney, Vol. 1, 512–528.

    Google Scholar 

  • Phillips, O.M. and Banner, M.L. (1974) Wave breaking in the presence of wind drift and swell. J.Fluid Mech. 66, 625–640.

    Article  ADS  MATH  Google Scholar 

  • Pullin, D.I. (1981) The nonlinear behaviour of a constant vorticity layer at a wall. J.Fluid Mech. 108, 401–421.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Scott, J.C. (1975a) The preparation of water for surface-clean fluid mechanics. J.Fluid Mech.. 69 (2), 339–351.

    Article  ADS  Google Scholar 

  • Scott, J.C. (1975b) The role of salt in whitecap persistence. Deep-Sea Res. 22, 653–657.

    Google Scholar 

  • Svendsen, I.A. and Madsen, P.A (1984) A turbulent bore on a beach. J.Fluid Mech. 148, 73–96.

    Article  ADS  MATH  Google Scholar 

  • Tallent, J.R., Yamashita, T. and Tsuchiya, Y. (1990) Transformation characteristics of breaking water waves, in “Water-Wave Kinematics” eds. A. Torum and O.T. Gudmestad. Kluwer Academic, 509–523.

    Google Scholar 

  • Teles da Silva, A.F. and Peregrine, D.H. (1988) Steep, steady, surface waves on water of finite depth with constant vorticity. J.Fluid Mech. 195, 281–302.

    Article  MathSciNet  ADS  Google Scholar 

  • Telste, J.G. (1989) Potential flow about two conter-rotating vortices approaching a free surface. J.Fluid Mech. 201, 259–278.

    Article  MathSciNet  ADS  Google Scholar 

  • Van Dyke, M. (1982) An album of fluid motion. Parabolic Press, Stanford, Calif., 176 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Peregrine, D.H. (1992). Mechanisms of Water-Wave Breaking. In: Banner, M.L., Grimshaw, R.H.J. (eds) Breaking Waves. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84847-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84847-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84849-0

  • Online ISBN: 978-3-642-84847-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics