Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Enhancing Medical Image Segmentation with Anatomy-aware Label Dependency

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2023 (BVM 2023)

Part of the book series: Informatik aktuell ((INFORMAT))

Included in the following conference series:

  • 823 Accesses

Abstract

Most Neural Networks for organ segmentation are trained to recognize the appearance of the organ, without considering the location of the organ in the body. However, a medical expert would include in their reasoning also the context around the organ. In this work, we propose reproducing this human behavior by enhancing the conventional multi-class segmentation pipeline with additional anatomical information. We apply this concept to a ventral organ segmentation model having a vertebrae label map as additional input, and to a vertebrae segmentation model enhanced by ventral organ information. In both cases, our proposed label dependency approach improved the performance of the baseline models: the dice score (DS) of the ventral organ segmentation improved by more than 3.5 % and the vertebrae identification rate by 1.8%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Salahuddin Z, Woodruff HC, C hatterjee A, Lambin P. Transparency of deep neural networks for medical image analysis: a review of interpretability methods. Comput Biol Med. 2022;140:105111.

    Google Scholar 

  2. Cramer G, Darby S. Clinical Anatomy of the Spine, Spinal Cord, and ANS. 2013:1–672.

    Google Scholar 

  3. Wang G, Li W, Ourselin S, Vercauteren T. Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. International MICCAI brain lesion workshop. Springer. 2017:178–90.

    Google Scholar 

  4. Venugopalan J, Tong L, Hassanzadeh HR, Wang MD. Multimodal deep learning models for early detection of alzheimer’s disease stage. Sci Rep. 2021;11(1):1–13.

    Google Scholar 

  5. Sekuboyina A, Husseini ME, Bayat A, Löffler M, Liebl H, Li H et al. VerSe: a Vertebrae labelling and segmentation benchmark for multi-detector CT images. Med Image Anal. 2021;73:102166.

    Google Scholar 

  6. Rister B, Yi D, Shivakumar K, Nobashi T, Rubin DL. CT-ORG, a new dataset for multiple organ segmentation in computed tomography. Sci Data. 2020;7(1):1–9.

    Google Scholar 

  7. Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-Net: learning dense volumetric segmentation from sparse annotation. International conference on medical image computing and computer-assisted intervention (MICCAI). Springer. 2016:424–32.

    Google Scholar 

  8. Sugino T, Kawase T, Onogi S, Kin T, Saito N, Nakajima Y. Loss weightings for improving imbalanced brain structure segmentation using fully convolutional networks. Healthcare. Vol. 9. (8). MDPI. 2021:938.

    Google Scholar 

  9. Sekuboyina A,Rempfler M,Kukačka J, Tetteh G,Valentinitsch A, Kirschke JS et al. Btrfly net: vertebrae labelling with energy-based adversarial learning of local spine prior. International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). Springer. 2018:649–57.

    Google Scholar 

  10. Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K et al. Attention u-net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999. 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca De Benetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Benetti, F., Frasch, R., Venegas, L.F.R., Shi, K., Navab, N., Wendler, T. (2023). Enhancing Medical Image Segmentation with Anatomy-aware Label Dependency. In: Deserno, T.M., Handels, H., Maier, A., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2023. BVM 2023. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-41657-7_12

Download citation

Publish with us

Policies and ethics