Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Automated Deep-learning-based Vertebral Body Localization and Instance Segmentation for Osteoporosis Assessment using CT

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2023 (BVM 2023)

Part of the book series: Informatik aktuell ((INFORMAT))

Included in the following conference series:

  • 848 Accesses

Abstract

Osteoporosis is an important disorder that is underdiagnosed. We aim to develop a robust automated CT-based vertebral label-independent approach for localization and instance segmentation of the vertebral bodies (VB) which permits assessment of bone mineral density (BMD) and generates VB center data for subsequent fracture assessment tools. We utilize an nnU-Net adapted for segmentation of the surface vs interior of the VBs vs background. This allows delineation of individual VBs, segmentation of the cortical surface encompassing the cancellous bone for BMD assessment, and localization of VB centers. After training the performance was evaluated on an external test data set. Our approach detected 97.5% of the vertebral bodies showing robustness to spinal degenerations like osteophytes. VB centerswere determined with residual errors of 3.5±0.9 mm, sufficiently accurate as input for our fracture detection tool. BMD evaluated in Hounsfield Units (HU) correlated with ground truth values with r2 = 0.96, RMS error = 11.3 HU, sufficiently accurate for automated diagnosis and CT-based opportunistic screening for osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Willers C, Norton N, Harvey NC, Jacobson T, Johansson H, LorentzonMet al. Osteoporosis in Europe: a compendium of country-specific reports. Arch Osteoporos. 2022;17(1):23.

    Google Scholar 

  2. Mitchell RM, Jewell P, Javaid MK, et al. Reporting of vertebral fragility fractures: can radiologists help reduce the number of hip fractures? Arch Osteoporos. 2017;12(1):71.

    Google Scholar 

  3. Aggarwal V, Maslen C,Abel RL, Bhattacharya P, Bromiley PA, ClarkEMet al. Opportunistic diagnosis of osteoporosis, fragile bone strength and vertebral fractures from routine CT scans; a review. Ther Adv Musculoskelet Dis. 2021;13:1–19.

    Google Scholar 

  4. Smets J, Shevroja E, Hügle T, Leslie WD, Hans D. Machine learning solutions for osteoporosis— a review. J Bone Miner Res. 2021;36(5):833–51.

    Google Scholar 

  5. Sekuboyina A, Husseini ME, Bayat A, et al. VerSe: a vertebrae labelling and segmentation benchmark for multi-detector CT images. Med Image Anal. 2021;73:102166.

    Google Scholar 

  6. Payer C, Štern D, Bischof H, Urschler M. Integrating spatial configuration into heatmap regression based CNNs for landmark localization. Med Image Anal. 2019;54:207–19.

    Google Scholar 

  7. Mader AO, Lorenz C, Bergtholdt M, et al. Detection and localization of spatially correlated point landmarks in medical images using an automatically learned conditional random field. Comput Vis Image Underst. 2018;176-177:45–53.

    Google Scholar 

  8. Elton D, Sandfort V, Pickhardt PJ, Summers RM. Accurately identifying vertebral levels in large datasets. Medical Imaging 2020: Computer-Aided Diagnosis. SPIE, 2020.

    Google Scholar 

  9. Lessmann N, Ginneken B van, Jong PA de, et al. Iterative fully convolutional neural networks for automatic vertebra segmentation and identification. Med Image Anal. 2019;53:142–55.

    Google Scholar 

  10. Yilmaz EB, Buerger C, Fricke T, et al. Automated deep learning-based detection of osteoporotic fractures in CT images. Mach Learn Med Imaging. Vol. 12966. 2021:376–85.

    Google Scholar 

  11. Genant HK, Wu CY, Kuijk C van, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res. 1993;8(9):1137–48.

    Google Scholar 

  12. Isensee F, Petersen J, Klein A, Zimmerer D, Jaeger PF, Kohl S et al. nnU-Net: self-adapting framework for U-Net-based medical image segmentation. Nat Methods. 2021;18:203–11.

    Google Scholar 

  13. Glüer CC, Krause M, Museyko O, et al. New horizons for the in vivo assessment of major aspects of bone quality microstructure and material properties assessed by quantitative computed tomography and quantitative ultrasound methods. Osteologie. 2013;22:223–33.

    Google Scholar 

  14. Glocker B, Zikic D, Konukoglu E, Haynor DR, Criminisi A. Vertebrae localization in pathological spine CT via dense classification from sparse annotations. Med Image Comput Comput Assist Interv. Springer, 2013:262–70.

    Google Scholar 

  15. Hempe H, Yilmaz EB, Meyer C, et al. Opportunistic CT screening for degenerative deformities and osteoporotic fractures with 3D DeepLab. Med Imag: Image Proc. Vol. 12032. SPIE, 2022:8.

    Google Scholar 

  16. Mastmeyer A, Engelke K, Fuchs C, Kalender WA. A hierarchical 3D segmentation method and the definition of vertebral body coordinate systems for QCT of the lumbar spine. Med Image Anal. 2006;10(4):560–77.

    Google Scholar 

  17. Engelke K, Adams JE, Armbrecht G, Augat P, Bogado CE, Bouxsein ML et al. Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults. J Clin Densitom. 2008;11(1):123–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolai R. Krekiehn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krekiehn, N.R., Yilmaz, E.B., Kruse, H.C., Meyer, C., Glüer, C.C. (2023). Automated Deep-learning-based Vertebral Body Localization and Instance Segmentation for Osteoporosis Assessment using CT. In: Deserno, T.M., Handels, H., Maier, A., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2023. BVM 2023. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-41657-7_37

Download citation

Publish with us

Policies and ethics